
An Introduction to Programming through C++

Professor Abhiram G. Ranade

Department of Computer and Engineering,

Indian Institute of Technology, Bombay

Lecture Number 18 Part-5

Array and recursion

Mergesort conclusion

(Refer Slide Time: 00:20)

Welcome back, in the last segment we discussed the merge function, and earlier we had

discussed the merge sort function, and now we are going to put together everything and analyze

the entire merge sort algorithm. And then we will also do a demo, and this will conclude this

entire lecture sequence so we will have some remarks at the end.

(Refer Slide Time: 00:51)

So, this was our merge sort function. I have just copied it over here for reference, so we are

going to analyze the time it takes, so we need some notation, so let us see that T(i) is the

maximum time required for merge sort to sort any sequence of length i. So, the time required

might be different for different sequences but I am just saying what is the maximum possible

time to sort any sequence of length i, so that is that let me call that T(i). So this is an unknown

and we are going to put down some conditions on this unknown and then we will be able to

estimate this unknown.

In fact this is not just a single unknown. I am defining several unknowns at the same time, so I

am defining several unknowns for an unknown for every value of i over here. So we can say

something about T1. What is T1? The time required for merge sort to sort a sequence of length 1.

Well that is very easy so if you execute this at this point itself we are going to return, so we will

take some time, but it will be some fixed amount of time.

So let us say it will take some time C. So, I could write T1=C over here also, but I am just yeah

so since everything else is going to be less than I will write this also as less than or equal to.

So, now I claim that T(n) has to satisfy this inequality. So let us see why? So this green part, so

T(n) is the time required for executing this entire function for this value of n. So this green part I

claim comes from this part, so we are giving mergesort a sequence of length n. So what do we do

with it? So we copy parts of it into U and parts of it into V the total number of elements that we

are copying is n.

So how much time does this copying take? Well it takes time proportional to n and therefore we

can write this as d times n, then we are going to do a merge sort on n/2, a sequence of length n/2.

So that I can estimate by 1 of these Tn by 2 and this is really a merge sort of n-n/2, but let us say

n is even for simplicity, and then therefore this also takes time n/2 at most and so this time must

be 2 times T(n/2).

So for this red part and then finally, we are going to do a merge of these 2 small's sorted

sequences. How much time does that take? So in the previous segment we said that the merge

itself takes time proportional to n, the proportional to the final sequence that results from

merging these two sequences and that we know is n. Yeah, actually I do not need this argument

over here so we can drop this argument we do not need it over here. But, yeah so what I have

said over here is that the green part is creating U, V sort halves and the merge. So I can write I

can simplify this and I can write f for d+e and so I can say that T(n) is fn plus 2 times T(n/2).

As, I as I said earlier we have several such variables T1, T2 T at T3 and similarly over here. So I

am really writing not just one inequality, but I am writing lots of inequalities at once. So every n

will satisfy something like this, all right but what does that mean? This means that this inequality

also applies to T(n/2) and let us say n by 2 is an integer so it applies to T(n/2) also, so what is this

inequality for T(n/2), well so just substitute n/2 over here, so fn will get n/2 over here and if I

substitute n by 2 I get 2 times T(n/4), but now I can substitute this into this.

So, what do I get? So I will get fn plus this fn by 2, 2 this times 2, so this is the 2 that comes

from here. So what is this? So I get an fn over here, then there is this 2 and this 2 cancel. So I

will get an extra fn so that is what comes over here and then this 2 and this 2 will give me a

4T(n/4).

Now, I am going to assume that this n is a power of 2. So I can sort of keep on substituting into

this. So I will ask you to work it out but if you keep on substituting into this what we are going to

get is that T(n) if I do this k times I will get a k over here and as you can see the power over here

is doubling and it is the same in the denominator over here, so I will get something like 2 raise to

k times T sub n over 2 to the k so this is a little hard to read, but this is n divided by 2 raise to k

over here. This 2 raised to k is in this fraction over here.

Now, I cannot do this ad infinitum of course. It have to stop then this number this number over

here, say becomes 1 and I said n is a power of 2. So when will this number become 1? Well if n

is 2 to the k, so if I choose k to be such that n is 2 to the k or in other words, if I choose k to be

log2n then this will stop, but at that time what will it be. So at that time it will be k will be log n

so this will become fn times log n and this will be n times T1.

But n times T1 is c. So this whole thing is less than fn log n plus c plus nc, but this n log n term

is going to dominate and therefore I can write t of n has to be smaller than some constant times n

log n. So which is exactly the result that we wanted, so this says that the time taken for sorting is

some constant times n log n rather than some constant times n2, and n log n is really much

smaller than n2, and that explains why or that suggests that merge sort should be much faster.

And I have made an assumption over here that n is a power of 2, but that is only a technical

assumption, I mean just to simplify the algebra over here. If it is not a power of 2 all of these

things actually work out but then algebra gets messier and so let us not worry about it. The main

ideas are already here.

(Refer Slide Time: 08:35)

So we are now going to do a demo our program is mergesort. So it is really the same code, but I

want to print our our array at different point, so I have written a function print over here, and that

gets code, so again in the merge I am printing what array gets passed at the beginning and also

the result that is produced at the end.

(Refer Slide Time: 09:04)

And mergesort also I am printing a message saying and sorting this array over here, and at the

end I am printing a message saying sorted. And this is the array to be sorted this is mergesort and

that is the main program. So let us compile this and run it, and let us run it.

(Refer Slide Time: 09:23)

So there is a certain amount of output over here, let us start at the beginning and let us see what it

is doing. So the first call to mergesort was this these this in the array. Now, if you remember

what this was doing, it was splitting the problem into two parts and it was recursing. So indeed

that is what is happening over here. This is the first half on which it was splitting, and it is

recursing on it but what happens next? It splits on this and it recurses is on this, but if you

recurse on 50 there is nothing to be done and so, this comes back to these returns immediately.

Next, the recursion and this is taken up. So that causes the smaller problems of size 1 to be

created so that those also get returned immediately, so now we have two sorted sequences which

were created and they are so we have a call here on the merge function. So, the result of merging

these two things is 29 87.

So this was returned to this sorting call, so there was a mergesort call with this as arguments that

led to this all of this this merge business, and therefore the result of this sorting call is all of this.

So you can keep going in this manner you can look through this just to see, just to understand

how this sorting is happening or better still you really should draw out that recursion tree to see,

to understand how the sorting actually happens.

Or you can just say that look I do not need to know these details, I need to know and the way I

think about recursion is I just look at the top level there the top level call and the recursive calls

and I assume that, the recursive calls happen correctly if in that case can I be sure that the top

level calls also happen correctly, so that is also fine, but if you need to know if you want to know

what the details are you can certainly run this program maybe add even more print statements to

it, so that you can see what is going on.

(Refer Slide Time: 11:54)

Alright so, that really concludes this lecture. And what did we do in this lecture? So we studied

binary search, and we wrote the code for it, and we also observed, and we also analyzed as to

why it is going to be faster than linear search.

And similarly we wrote the code for merge sort, and we analyzed that it has to be much faster

than the selection sort code that we wrote earlier in the course. Both of these algorithms have a

similar idea. Which is that we take our original problem, the problem that is given to us and we

divide it into two parts, and in the case of binary search we only work on one of those parts, we

somehow know and that is, what the sorting gives us that we do not need to work on one part at

all.

In the case of mergesort we have to work on both parts, but in any case we are looking at a big

problem as being decomposed into smaller problems. And this idea of viewing and solving

problems in this manner is often called divide and conquer, so what you have seen are examples

of divide and conquer.

And, recursion works nicely to divide and conquer but recursion can also work quite nicely in

other cases. So in any case we now have seen two examples of recursions with arrays and you

can certainly note that both of these are very nice applications, and very nice algorithms, and

very useful algorithms. So we will stop over here but I will, as always urge you to look at the

problems on at the end of this chapter. Thank you.

