
An Introduction to Programming through C++

Professor Abhiram G. Ranade

Department of Computer Science and Engineering

Indian Instutute of Technology Bombay

Lecture No. 16 Part- 3

 Array Part-2

Arrays and function calls

Welcome back, in the previous segment we discussed what how aname[index] is interpreted.

(Refer Slide Time: 0:24)

Basically we discussed the semantics of this square bracket operator. In this next segment we

are going to talk about how arrays are passed to functions.

(Refer Slide Time: 0:43)

So we really would like to have functions on arrays, right. I mean we might do, we might

want to do the following things, we might say want a function which finds the largest value in

an array.

(Refer Slide Time: 0:52)

Or if you might want a function which decides whether a given value is present in an array or

a function which calculates the average of the elements in array, in an array. And so many

other things could be done, okay. So in this segment we are going to see how all of these can

be done, all of these things can be done.

(Refer Slide Time: 1:13)

Let me just plunge into it directly by giving an example. So here is a program which finds the

average of elements in an array or a function rather. So this is the function and this is the

main program which calls this function, okay. So before looking at it too carefully and trying

to see how it executes,

(Refer Slide Time: 1:42)

let us first make some preliminary checks, okay. Let us first check if this is a syntactically

valid program, never mind what it does, okay. So what do I mean by that? Well, when we

make a function call, when we, okay, so, the types of the arguments must match the types of

the parameters to the function, okay, so is that happening here. Well the first parameter to

average has type double star, okay. So this is the first parameter and its type is double*, okay.

The first argument in the call is q and its type if you remember is also a double*, why?

Because it’s the name of an array of doubles and its value is the address of the zeroth element

and it points to a double element. So the type is correct, the type of this is indeed the same as

the type of this. So when we execute the function, the value q will indeed be copied into M,

so no problem with that.

The second parameter here is type int and here also is type int, so that is of course absolutely

no problem about that, so that is nothing new about that.

(Refer Slide Time: 3:09)

Okay, now let us see how this is going to be executed. So when we execute this average of q,

4 what is going to happen? Well activation frame will be created for average and the value of

q which is the starting address of this array will get copied into the parameter M. And in each

iteration what is going to happen? M[i] is needed. Now like the example that we took a little

bit earlier, this M has exactly the same value as this q. So if we write M[i] in this, even in

this, M[i] is going to be in the same variable as q[i]. Because M and q mean the same thing,

M and q have the same value, okay. So M has the value starting address of q of type double,

so M[i] means variable of type double at address q plus 8i.

Or otherwise it is the same thing as q[i]. Exactly like the exercise that we just, example that

we justed in the previous segment. So effectively what is going to happen is that we are going

to calculate the average of q0, q1, q2, q3, which is exactly what we want. And so this will

indeed return, it will calculate the sum of the elements and then return divided by four, so it

will actually return the average exactly like we wanted.

And the main program will print it out, so that is how the execution will go.

(Refer Slide Time: 5:03)

So how are arrays then passed to functions from this example? So we are passing two

arguments, the starting address of the array and let say the corresponding parameter is A,

okay, and the number of elements in the array. Or maybe I should have written M to keep

consistency with the previous example, but let us say it is A. So now can elements of the

array be accessed in the called function? Well, if you write A[i] in the called function, it will

actually give you the ith element of the calling program. And therefore, you can access the

elements, even though you are not, you are not copying the elements, you are just sending the

starting address of that array. But if the function modifies the elements, then the modification

will be seen in the main program because the function is directly operating with the same

array. It has a pointer and that pointer is operating directly in the activation frame of the

calling program.

(Refer Slide Time: 6:32)

So when you pass the name of an array in a function call, its value the starting address of the

array, is copied to the corresponding parameter. But because we pass the starting address of

the array, we are effectively enabling the function to pass the array. You can say the

following about this entire process. You can say that the array name is passed by value. So let

us just, let me just explain this.

(Refer Slide Time: 7:06)

So in this, this array name is passed by value, why? Because the value of q is put in the value

of, put in M. And so therefore, M and q have the same value. But indirectly, indirectly

because you are passing the array name, you are allowing the called function access to the

entire array. So you could say that the array elements are passed by pointer. Well effectively,

you are saying that all the array elements are passed by a pointer to the zeroth element,

because if you add the appropriate displacement, the called function can get to every element

which it did in our average function and it can do in any old function.

The interesting part in all of this is the square bracket operator. So it given the address of any

array and an index, it can get us to the corresponding element. Even if the address belongs to

a different activation frame.

(Refer Slide Time: 8:23)

Now when we write functions an alternate syntax is also allowed and maybe it is

recommended. So I can write the average function as not double star M, but double M[]. In

this double M[] is synonymous with double *M, okay, it means the same thing. But it is

slightly more indicative that we expect M to be an array name and not just any old pointer.

But this is really for our benefit, C++ treats both of these things as essentially the same.

And I should further note that this M[] syntax is not allowed in other places besides the

declaration or definition of a function. Now the second argument over here okay, is not really

linked formally to this, this element. It is just a second argument, it is just another integer.

What you do with that integer inside the function body, is your problem. So we are choosing,

we are deciding when we write this function that the second argument is supposed to be the

length of the array. So, of course, the average function does not know that. So you can in fact

pass a smaller value of n and then the average function will just take the average of the initial

so many elements, rather than all the elements in the array. All right, so what have we

discussed?

(Refer Slide Time: 10:20)

So we have said that, no special mechanisms are needed to pass an array to a function other

than the semantics of the square bracket operator. And also the idea that the array name is a

pointer to the starting address, the starting address of the region allocated for the array. We

pass a pointer to the zeroth element that is we state where the array begins in memory and we

pass the number of elements. This is what we do if we want to pass an array to a function.

The square operator can be used to access individual elements of the array. And this

concludes this segment. In the next segment, we are going to build a slightly more elaborate

function, a function to sort an array, but will take a quick break.

