
An Introduction to Programming through C++

Professor Abhiram G. Ranade

Department of Computer Science and Engineering

Indian Institute of Technology Bombay

Lecture No. 16 Part - 2

Array Part – 2

Interpretation of aname [index]

(Refer Slide Time: 0:20)

Welcome back, in the previous segment we discussed, how memory is allocated for an array.

And we discussed what the value of, what value the name of an array has and we also discussed

what type the name of an array has.

(Refer Slide Time: 0:45)

In this segment we are going to discuss, discuss how a computer interprets something like

aname[index]. So the first observation or the first thing that I should tell you is that square

brackets are actually considered to be a binary operator by C++. So we could have written this

expression as aname[]index, this may look, make it look more like an operator expression, but

because we are familiar with putting things inside brackets we choose to write it as aname open

bracket, index, close bracket. But really the interpretation of C++ is sort of like this.

Alright, so what exactly is the interpretation? Well so first of all aname and index are the

operands of the operator and aname of index means the following. So it means, this expression

means a variable. And which variable? The variable which is stored at aname plus S times index,

where S is the size of a single element of the type that aname points to. So this is a little bit of

complicated definition and I am going to give an example which will make it clear.

And you may say that look when I am doing this interpreting this expression or whenever I write,

whenever I write in my program aname[index], does the computer actually compute something

like this? Yes, it does. So it will multiply the index by something and then add it to the name. So

this is not really entirely an, entirely surprising, because we said that C++ is going to give you a

region of memory and the region is going to start at aname and then you are going to have

element 0, then you are going to have element 1, you are going to have element 2 and so on.

And this distance is going to be the size of each element or it is this S. And therefore, if I want to

get to the ith element I should know how much forward I should go and how much forward

should I go? I should go forward S times whatever that index is, that is it. So that is really this

calculation.

Alright, so you have to note that a single multiplication and addition is done, no matter how large

the array is. So this is why an array is often called a random access data structure, so you can get

to any element of that array in essentially the same amount of time by doing just a single

multiplication and addition.

(Refer Slide Time: 4:03)

So here is an example, so this is our old array q, so we defined it by writing int q 4 and we said

earlier that these are the addresses used for q0, q1, q2, q3 and we said that the name q has value 4

and its type is int*. So let us take one of the elements, say q3 and let us see how the computer or

how C++ views q3 and whether that view matches our view. So what is q3? So we said that first

of all it is a variable, so q this indexing operator 3 is an expression and the result of the

expression is, it is variable of the type that q points to.

And what does q point to? q is int*, so q points to an int, so q3 is an int which is good because

we are expecting q3 to be an int. And q has type int*, so q3 has type int. And it is stored at

address q plus S times 3 where S is the size of a single variable of the type that q points to. In

other words, it is a variable of type int which is what we already said and it is stored at q which is

1004, S which is 4 times 3 so 1016, so it is the starting address so it is q3.

So it is indeed what we think of q3 as what we think of as q3 so the computers view and our

view actually do match. And it is not a surprise, because I told you more pictorially how the

computer gets to the position in memory where q3 is or which element of which variable in

memory, so it needs to get to that position in memory and that calculation clearly should require

addition and multiplication.

(Refer Slide Time: 6:15)

So, how a computer gets to aname and address? The index is multiplied by the element size and

added to the starting address to get the position in memory where the variable is stored. And

whenever you write aname[index] that variable which you got to by doing this address

calculation is the one which is considered the result of this expression, the result of evaluating

this expression.

(Refer Slide Time: 6:46)

Now, in light of this discussion of how aname[index] works, let us try to see what index out of

range means. So here is our old array q and suppose we execute q[10]=34, so what would this

do? So if we mechanically interpret as per our rule and, which is how the computer interprets it.

So it is the variable of type that q points to, stored at address q plus 10 times S where S is the size

of an integer of a single variable of the type that q points to. Again this is a mouthful, but we

know how to interpret it now.

So it is a variable of type int, because q points to int, so it is a variable of type int. It is stored at q

plus 10 times S so q plus 10 times 4 equal to 1044, so this is the position where q of 10 would

have been had q actually had 10 elements, but q does not have 10 elements. So this address is

somewhere beyond the region allocated for q, so 34 if you execute this statement 34 will get

stored in some strange part of the memory which has nothing to do with q. So that is why it is

bad to have indices out of range, so some other variable will get destroyed.

Now the other way is also bad, if I write x equals q of 10 what will happen? It will pick up the

value from this 1044 and so X will get some strange value, who knows what value it gets? So

again it is a, it is a bad idea to have an address which is out of range. And now you see, what

C++ will do in these cases, in in such cases.

(Refer Slide Time: 9:05)

But there is a little bit more to be said, if you read or write from an improper address such as

1044, you may store data into wrong, into some wrong place, you may read data from a wrong

place. And sometimes, C++, or your computer hardware may say that look some addresses are

protected, why are they protected? Because they may contain code and you do not want

programs to be writing data into the code region of memory or the program region of memory.

So, if your program tries to do that then the hardware will raise an alarm and it will cause your

program to abort. So any of these things could happen and so therefore make sure that the index

is in the correct range.

(Refer Slide Time: 9:58)

Now some programming languages prevent index out of range by explicitly checking, so the

moment you write a[i] the language will have additional code which it generates itself you do not

have to write it, which will check first whether i lies in the range 0 through size minus 1, where

this size is the size of the array in question. If it does not, then it will not make that access, it will

just print an error message saying that oh you made, you gave an index out of range and the

program will stop.

Index checking is not done in C++, why? Because it takes extra work, C++ wants to run very

fast. Of course C++ does not want wrong answers, but C++ says, the C++ designers believe that

it is the programmer’s job you have to ensure that your index is correct and of course you can do

that, I mean you have to think a little and you to be careful but that is your job, that is what the

C++ designers believe.

(Refer Slide Time: 11:22)

So here is an example, so we have this code and let us see what it does. So when you come to the

first statement of this code, this statement will cause an array q to be allocated memory, what

happens next? The variable r is created, remember the type of r is int*, so it is meant for storing

addresses so when you execute this r will get the value q, what is the value of q? It is the starting

address, so what will the value of r be? It will also be the starting address, so at this point r and q

will have the same value.

Alright, so now what happens when you execute this? When you execute this, this expression

since r has the same value as q, this expression is as good as q[3]. So 5 will get placed in q[3], so

when you do this printing 5 in get printed. And if you print r[3], this is not, this is also going to

refer to q[3] and so again 5 will get printed. So r and q have the same value and r[3] and q[3]

denote the same variable and therefore this will end up printing 5 in both cases.

(Refer Slide Time: 12:58)

Aright, so what have we discussed? So we have discussed that aname[index] is an expression

with square bracket as an operator. When the index is in the range the expression evaluate, when

evaluated tells what variable is meant, if the index is out of the range, then the expression does

not denote a valid variable. And this calculation happens fast, there is only an addition and

multiplication to be done and it happens in time independent of the array length. Aname[index]

is a valid expression if aname is a pointer.

Next all these things are going to have some bearing on how you use arrays in function calls and

that is what we will see in the next segment, we will take a break.

