
An Introduction to Programming through C++

Professor Abhiram G. Ranade

Department of Computer Science and Engineering IIT Bombay

Lecture No. 15 Part-5

Array Part-1

Polynomial multiplication

 (Refer slide time: 00:19)

Welcome back in the last segment we discussed a variation on the marks display program in

which we needed to store the roll numbers as well as the marks. Now we are going to look at

another interesting use of arrays namely for polynomials representing polynomials and operating

upon them.

(Refer slide time: 00:39)

So let us say we are given 2 polynomials A(x) and B(x) this is what A(x) might look like

a0+a1x+a2x
2+anx

n. And this what B(x) might look like b0+b1x+b2x
2+bmxm. In general m may not

be equal to n we would like to find the product C(x) equals A(x) times B(x), so you know the

product is going to look like this. There is going to be a constant term c0+c1x+c2x
2+am+nx

m+n.

So there are going to be m plus n plus 1 coefficients, So basically what is the problem? As input

we are given this numbers a0 a1 all the way till an so this numbers are given to us. You are also

given this numbers and we are supposed to find these numbers. So we are given n plus 1

numbers this m plus 1 numbers this and we are supposed to find m plus n plus numbers which

are this over here. So the question is-how to we do that? And first where do we store this

numbers? So by now the answer should of this you should store this numbers in an array so, it is

a natural to use an array of n plus 1 elements to store the coefficients of a degree n polynomial.

In fact we should store ai in array element with index i. So now we are supposed to generate the

ci, so how do we do that? So here is sort of the simple idea, so when we do this multiplication

every term over here is going to multiply every term over here so in particular let us say aix
i is a

term in A(x) now that will multiply some term bjx
j in B(x).

And if you just look at the product of this two terms that will be aibj times x to the power i plus j

what will be the effect of this term? So this is going to contribute to the coefficients of x to the

power i plus j, and what is that coefficients? That coefficients is c sub i plus j. So basically the

idea over is that we form every such possible product and then we look at well, if this first the

coefficient of x to the i if this was the coefficient of x to the j.

Then the product that we calculate should contribute to the coefficient of i plus j, so in fact we

should add the product into the current value of c i plus j. So that is exactly whatever algorithm is

going to be. So let us say for simplicity we have two polynomials both of degree 10 and we want

to multiply those.

(Refer slide time: 04:20)

So clearly, a will have 11 coefficient so will reserve an array with 11 elements for it and array of

11 elements for b and c will have 21 coefficient so will use an array of 21 elements for c. So let

us see how do we read them reading is straight forward so we are going to read A first starting

with a0 going all the way till a10, so we so when I say read in the polynomial A(x) well the

polynomial is determined by the coefficient. So I really mean reading the coefficients and of

course you know by now that reading in the coefficients is done simply using a for loop, so by

the way for loops are sort of the ideal things to use with arrays because the index can be the

control variable can simply be the index, next we are going in the polynomial B in a similar

manner and now we are going to generate our polynomial C. So first we have to set all the

coefficients in it to 0 so the coefficients range from 0 through 20 so we are going to set all those

coefficients to 0. And next we are going to form the product of every term in the A polynomial

with every term in the B polynomial.

So, i is going to be the index which is going to range over the A polynomial the terms in the A

polynomial and j is going to be the index which ranges over the terms in the B polynomial and if

we form the product ai times bj. We said earlier it should affect c of i plus j. So that is exactly

that has what is we are going to do so we are going to add ai times bj to c i plus j, remember that

this plus equal to the short form for saying ci+j=ci+j+aibj.

So that is it the entire multiplication after that we just have to print out the result. Now I am

going to just describe another polynomial multiplication algorithm and this algorithm uses sort of

an interesting manipulation of the indices.

(Refer slide time: 06:54)

So the problem is really the same we are given polynomials we want to find the product and this

time I am going to note explicitly what is Ck going to equal. So Ck is going to get the product

the value of a0 bk will contribute to Ck then a1 bk minus 1 will also contribute to Ck and so on

until ak be 0. So what now we are going to do is we are going to compute c0 first then c1 then c2

then all the way till c m plus n. So, earlier we sort of did the multiplication in a convenient order

and we updated Ck’s now we are going to say no let us construct Ck’s, let us construct the

complete Ck’s and on c0 then the complete c1 complete c2 and so on. And for that we need this

formula and as you can see if we want to implement this formula we have to access the elements

of a and b in an interesting order.

So the elements of a have to be accessed starting with 0 1 all the way till k which is simple

enough but the elements of b have to be accessed starting at k then going down k-1 k-j coming

back down to 0. So that sort of the unusual part of this program. So we are going to do this by

setting ck equal to 0 first and then this loop can written down in this manner so ck, so i is going

to range from 0 to k so this is I, the index of a is i.

So i is going to be 0 first, 1 all the way till k. So that is what this, loop range is telling us so ai

then b of k-i, so indeed if you see the coefficient over here is k minus this coefficient this is k

minus this coefficient and so on. so that is what we end up writing so this will generate Ck for

any fixed k so all that remains is to just put this loop and we are done.

(Refer slide time: 09:19)

So as an exercise I will let you complete the program to multiply polynomials using the second

method and then I would also suggest you to change both programs, so that instead multiplying a

degree 10 polynomial by a degree 10 polynomial you write it for a general m you can put m and

n as constants. But make them different and write them as use the idea define them as const int

m=10, const int m=15 and then write in terms of m and n. Then I would also like you to go over

the loops and estimate, how many multiplications are performed in multiplying a degree m

polynomial by a degree n polynomial, and you should see roughly there are about m times n

multiplications that get performed.

So this is just to get a sense of how much is this algorithm is going to take let us say if we are

multiplying really huge polynomials alright, so what did we discuss?

(Refer slide time: 10:30)

So, we said that polynomials can be nicely represented by arrays nicely in the sense that the

coefficient of the ith power can be stored in the ith element and we do not need to store i

explicitly just the position tells us the position of coefficient in our memory tells us what i it

refers to and this actually very similar to the case when we have consecutive roll numbers

starting at 0.

Then we also saw that multiplication can be done in different ways, and especially the second

way is slightly trickier. And I would request you to go over that maybe print out the indices that

get accessed in the loop, if you are not sure but anyway so there are two ways and please also

look at the exercise just that were given.

So, in the next segment we are going to discuss a somewhat longish problem called taxi dispatch

which uses the array in another interesting manner but will take a quick break.

