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Welcome back in the last segment we discussed a variation on the marks display program in 

which we needed to store the roll numbers as well as the marks. Now we are going to look at 

another interesting use of arrays namely for polynomials representing polynomials and operating 

upon them. 
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So let us say we are given 2 polynomials A(x) and B(x) this is what A(x) might look like 

a0+a1x+a2x
2+anx

n. And this what B(x) might look like b0+b1x+b2x
2+bmxm. In general m may not 

be equal to n we would like to find the product C(x) equals A(x) times B(x), so you know the 

product is going to look like this. There is going to be a constant term c0+c1x+c2x
2+am+nx

m+n. 

So there are going to be m plus n plus 1 coefficients, So basically what is the problem? As input 

we are given this numbers a0 a1 all the way till an so this numbers are given to us. You are also 

given this numbers and we are supposed to find these numbers. So we are given n plus 1 

numbers this m plus 1 numbers this and we are supposed to find m plus n plus numbers which 

are this over here. So the question is-how to we do that? And first where do we store this 

numbers? So by now the answer should of this you should store this numbers in an array so, it is 

a natural to use an array of n plus 1 elements to store the coefficients of a degree n polynomial. 

In fact we should store ai in array element with index i. So now we are supposed to generate the 

ci, so how do we do that? So here is sort of the simple idea, so when we do this multiplication 

every term over here is going to multiply every term over here so in particular let us say aix
i is a 

term in A(x) now that will multiply some term bjx
j in B(x). 

And if you just look at the product of this two terms that will be aibj times x to the power i plus j 

what will be the effect of this term? So this is going to contribute to the coefficients of x to the 

power i plus j, and what is that coefficients? That coefficients is c sub i plus j. So basically the 



idea over is that we form every such possible product and then we look at well, if this first the 

coefficient of x to the i if this was the coefficient of x to the j.  

Then the product that we calculate should contribute to the coefficient of i plus j, so in fact we 

should add the product into the current value of c i plus j. So that is exactly whatever algorithm is 

going to be. So let us say for simplicity we have two polynomials both of degree 10 and we want 

to multiply those. 
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So clearly, a will have 11 coefficient so will reserve an array with 11 elements for it and array of 

11 elements for b and c will have 21 coefficient so will use an array of 21 elements for c. So let 

us see how do we read them reading is straight forward so we are going to read A first starting 

with a0 going all the way till a10, so we so when I say read in the polynomial A(x) well the 

polynomial is determined by the coefficient. So I really mean reading the coefficients and of 

course you know by now that reading in the coefficients is done simply using a for loop, so by 

the way for loops are sort of the ideal things to use with arrays because the index can be the 

control variable can simply be the index, next we are going in the polynomial B in a similar 

manner and now we are going to generate our polynomial C. So first we have to set all the 

coefficients in it to 0 so the coefficients range from 0 through 20 so we are going to set all those 

coefficients to 0. And next we are going to form the product of every term in the A polynomial 

with every term in the B polynomial. 



So, i is going to be the index which is going to range over the A polynomial the terms in the A 

polynomial and j is going to be the index which ranges over the terms in the B polynomial and if 

we form the product ai times bj. We said earlier it should affect c of i plus j. So that is exactly 

that has what is we are going to do so we are going to add ai times bj to c i plus j, remember that 

this plus equal to the short form for saying ci+j=ci+j+aibj. 

So that is it the entire multiplication after that we just have to print out the result. Now I am 

going to just describe another polynomial multiplication algorithm and this algorithm uses sort of 

an interesting manipulation of the indices. 
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So the problem is really the same we are given polynomials we want to find the product and this 

time I am going to note explicitly what is Ck going to equal. So Ck is going to get the product 

the value of a0 bk will contribute to Ck then a1 bk minus 1 will also contribute to Ck and so on 

until ak be 0. So what now we are going to do is we are going to compute c0 first then c1 then c2 

then all the way till c m plus n. So, earlier we sort of did the multiplication in a convenient order 

and we updated Ck’s now we are going to say no let us construct Ck’s, let us construct the 

complete Ck’s and on c0 then the complete c1 complete c2 and so on. And for that we need this 

formula and as you can see if we want to implement this formula we have to access the elements 

of a and b in an interesting order. 



So the elements of a have to be accessed starting with 0 1 all the way till k which is simple 

enough but the elements of b have to be accessed starting at k then going down k-1 k-j coming 

back down to 0. So that sort of the unusual part of this program. So we are going to do this by 

setting ck equal to 0 first and then this loop can written down in this manner so ck, so i is going 

to range from 0 to k so this is I, the index of a is i.  

So i is going to be 0 first, 1 all the way till k. So that is what this, loop range is telling us so ai 

then b of k-i, so indeed if you see the coefficient over here is k minus this coefficient this is k 

minus this coefficient and so on. so that is what we end up writing so this will generate Ck for 

any fixed k so all that remains is to just put this loop and we are done. 
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So as an exercise I will let you complete the program to multiply polynomials using the second 

method and then I would also suggest you to change both programs, so that instead multiplying a 

degree 10 polynomial by a degree 10 polynomial you write it for a general m you can put m and 

n as constants. But make them different and write them as use the idea define them as const  int 

m=10, const int m=15 and then write in terms of m and n. Then I would also like you to go over 

the loops and estimate, how many multiplications are performed in multiplying a degree m 

polynomial by a degree n polynomial, and you should see roughly there are about m times n 

multiplications that get performed. 



So this is just to get a sense of how much is this algorithm is going to take let us say if we are 

multiplying really huge polynomials alright, so what did we discuss? 
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So, we said that polynomials can be nicely represented by arrays nicely in the sense that the 

coefficient of the ith power can be stored in the ith element and we do not need to store i 

explicitly just the position tells us the position of coefficient in our memory tells us what i it 

refers to and this actually very similar to the case when we have consecutive roll numbers 

starting at 0. 

Then we also saw that multiplication can be done in different ways, and especially the second 

way is slightly trickier. And I would request you to go over that maybe print out the indices that 

get accessed in the loop, if you are not sure but anyway so there are two ways and please also 

look at the exercise just that were given. 

So, in the next segment we are going to discuss a somewhat longish problem called taxi dispatch 

which uses the array in another interesting manner but will take a quick break. 


