
An Introduction to Programming through C++

Professor Abhiram G. Ranade

Department of Computer Science and Engineering

Indian Institute of Technology Bombay

Lecture No. 15 Part - 2

Array Part – 1

Marks averaging problem

(Refer Slide Time: 0:38)

Welcome back, in the previous segment we saw how to declare arrays with and without

initialization and how to access the elements, how to use them in computation, how to read

and read values into it and print the values.

(Refer Slide Time: 0:41)

Now we are going to see some larger examples of using arrays. So we are going to start with

relatively simple familiar sounding problem. So the problem is you are supposed to write a

program that reads in marks of 100 students in a class, and the marks are given in the order of

the roll number. And let us say in this class, the roll numbers happened to go from 0 to 999.

So yes, I know that the numbers usually do not start at 0, but just, just for fun let us say they

do start over 0, over 0. So in this class the roll number, there are 100 students and their roll

numbers go through, go from 0 through 99. So that is the first part of what is the program is

supposed to do.

After that students may arrive in any order, and type their roll number using the keyboard.

The program must reply to that by printing out their marks. So maybe first the student with

the roll number 43 comes, then the program is supposed to print out what marks student

number 43 got, then there will be 67 so marks for 67 will be printed, then there maybe 6 then

the marks for the student with roll number 6 should be printed, and so on. Now, if at any time

an illegal number is given then the program must terminate, so this is this specification, this is

what our program is expected to achieve.

(Refer Slide Time: 2:20)

So, what does the program look like? So we clearly should have an array in which we should

be storing the marks and so let us say we have an array of doubles and of 100 elements, we

need 100 elements because we have 100 students. Now the first step is to read in all the

values, all the marks that the students have received. And we were told that the marks will be

typed in this order. So first the marks were 0, then the marks were 1, then the marks were 2,

so it is natural to write this for loop, where in the ith iteration we are reading in the marks

obtained by student i and placing that in marks of i.

And then there is the loop in which we are going to wait for students to come and type their

roll numbers. So for this lets say we have a variable called roll number and we will print out a

message saying roll number, so this will be a queue to the students to type their roll numbers.

So then we will read in whatever the students are typing and now if the students have typed a

valid roll number, then we should print out the corresponding marks.

So, if roll number less than 0 or roll number greater than 99 that is a invalid number, so in

that case we are going to stop execution so we are going to break out of this loop. Otherwise,

we know that the roll number that was typed in lies between 0 and 99, so in fact it is a valid

index as far as the array is concerned, so we are just going to print out marks of roll number

and that is the end of the loop. So if you break out of it, the program will terminate and that

would be the end.

(Refer Slide Time: 4:25)

Now let us do a slightly more interesting version of this where we are going to read in

everything, but we are going to print out the roll numbers of those students who got the

highest marks. So here is the program, so let us say that the marks array was defined as

before and we have read in the marks exactly as before. So now, we want to figure out first

what is the, what are the highest marks.

So for this we are going to have a variable called maxsofar, so maxsofar we are going to

initialize to 0 and the way to interpret this is that at the beginning of the ith iteration of this

loop we are going to make sure that maxsofar holds the maximum of the marks between 0

and i or 0 and i minus 1. So indeed, before entering the loop, maxsofar is the value of

marks[0], so it is indeed trivially the maximum amongst all say marks[0] all the way till

marks[i-1] which is 0 itself, so it is in fact.

So there is only one element in this set marks of 0 through i minus 1 because both of these

will be 0 and indeed maxsofar is that value. But this plan says that not only should this be

true at the beginning of the (ith), of the first iteration when i is 1, but it should be true for all

iterations. So if it is true for all iterations, when our body of the loop should make it be so.

So, what do we need to do?

Well so when we enter this loop, we know that maxsofar is the maximum amongst 0 through

i minus 1. So, if the next number marks of i is bigger than this then our marks, our max

should change. Otherwise, our max should be as before. So all that we need to do is to write

maxsofar is the max of maxsofar, whatever we have seen so far and whatever we see next, in

the next marks value.

So this max is a statement, is a function which is already defined in C++. And in fact we

know that C++, functions that C++ defines for math purposes are in this include in this

header file called cmath, so indeed max comes from that header file cmath, that is it. So what

would be, what would be true at the end of it? So on the 99th iteration, what would be true?

So on the 99th iteration what would be true? So i equals 1 and i equals 99, so at that point

maxsofar should hold the maximum of everything from 0 through 99 and indeed that means

maxsofar will have value of the maximum possible marks. So at this point we have identified

what the maximum marks so far are. So maxsofar now holds max value in the entire array.

Now, we just have to check which are the marks or which are the roll numbers really who

have got that many marks.

So again go over all the elements this time even including 0 and we are going to check are the

marks[i] equal to maxsofar? If so then we should print out i so that is it. So there are two

ideas which have been used in this, which are worth noting. So in this first part, we are doing

something which might be called accumulation.

So maxsofar is accumulating the maximum value, it is keeping track of the maximum value

and this is a very standard idiom, here we are keeping track of the maximum value, but you

may keep track say of the sum of all the values. Again it is going to be something like that

instead of max of maxsofar, and max i, it might be something like plus of something and

something, something and marks[i], so that is one idiom.

And then in the second part we are going over all the elements again, but we are printing out

only some subset that subset which satisfies this condition. And in other words we are

filtering out things. And therefore, this idiom is often called a filtering idiom.

(Refer Slide Time: 9:25)

So let us see a demo of this and this is going to be in file highest.cpp which I have created

already, but I am going to show it to you. So let me get to that file, so highest.cpp is this. So

you can see that we have used marks[100] array as before and then we are doing cin marks,

all of this, and this is our max array. Now this is the program that you have seen, now I am

going to make a change it to it because I do not want to type all the (100 element) 100

numbers. So I am going to change it so that I will only use 10 numbers so I should really

change all the 100’s to 10’s.

(Refer Slide Time: 10:38)

Alright, so let us see, so let us compile this and let us run it. Now, when I am going to run

this, I am going to do something slightly unusual, something that you may not have seen so

far, you have not seen so far in this course. So normally I am expecting, so when I run this

program C++ expects me to type the values from the keyboard. But, if I have to test a

program often then typing the values, especially 10 values even is a bit cumbersome.

So what I am going to do instead, is that I have already typed in those values in this file

highest.dat. So maybe I should show you that first. So, if I do this highest.dat, it will show

you that I have already typed in these values, so these are my 10 marks, so marks for student

0, roll number 0 are 65, for student roll number 1 42, 2 78 and so on. So these numbers I have

already typed.

Now if I do ./a.out and I say <highest.dat, then instead of taking input from the keyboard this

program will take the input from that file, so let us see that. So it took the input from the file

and then it has printed those roll numbers for which the marks were the highest possible, so

let us check that. So, if we look at this which were the highest marks? Well 91 is the highest

mark and where did this appear? So this is roll number 0, this is roll number 1, 2, 3 so indeed

roll number 3 got 91, 4, 5 so indeed 5 got 91, 6, 7, 8, 9 so roll number 9 also got 91, so it has

indeed printed out things correctly.

(Refer Slide Time: 12:54)

So here we saw that our program this program was executed, but we changed the number of

students so that only 10 students were used.

(Refer Slide Time: 13:10)

And here the input data, sorry the data was taken from the file rather than by rather than

through the keyboard because we wrote <highest.dat.

(Refer Slide Time: 13:28)

So a small exercise for you, usually we will have roll numbers starting at 1 rather than 0, to

handle this a simple strategy is to store the marks of roll number i in marks[i-1]. So we have

written two programs so far, so this exercise says modify both the programs so that they

follow this convention. So they follow the more usual convention that student roll numbers

start at 1 and not at 0.

(Refer Slide Time: 14:04)

So what have we discussed in this segment? Well, we saw a couple of simple programs

involving arrays. And an important point to note is that although roll numbers are involved,

we did not actually store the roll number anywhere. Because the index played the role of the

roll numbers. So because we stored the marks of roll number 0 first, then the marks of roll

number 1, the marks of roll number 2, we sort of implicitly made a correspondence between

the role number and the mark.

And then the program involved a few important idioms. So going through all the elements of

an array and filtering out the elements to print and also the accumulation the maximum of all

the elements in a variable. And we will continue with more examples, but we will take a

quick break.

