
An Introduction to Programming through C++

Professor. Abhiram G. Ranade

Department of Computer Science and Engineering,

Indian Institute of Technology Bombay India.

Lecture 14

Advanced Features of Functions: Function overloading and lecture conclusion

Welcome back, in the last segment we discussed how default values can be given to

some parameters in a function that we are defining. In the next segment we are going to

discuss another feature which can make it easy we can make it more convenient to

write certain functions and that is so called overloading of functions. And in this

segment will also conclude this entire lecture sequence.

 (Refer Slide Time: 00:47)

So, C++ allows you to define multiple functions with the same names, provided they

have different argument lists. So, the term overloading is used and perhaps we should

really be saying overload the name, overload in the sense that the same name means

some different things and the same name can be used to refer two different functions.

So that is what C++ allows.

(Refer Slide Time: 01:17)

So suppose you want to write a function to compute the area of a graphical object. Now

the name area seems like a good name and perhaps you might want to use the same

name to find the area of a circle or to find the area of a rectangle after all what you are

getting out is the area so why should you use a more complicated name?

Now C++ allows you to do this and there is no explicit new feature that explicit new

construct that I am going to talk about you just have to do it that is all. The only

requirement is that the parameter lists should be different. So long as the parameter

lists are different you can do it and the parameter lists are need to be different.

Because that is how C++ will note that the two functions actually are different,

otherwise if you write f of some x and there are two definition of f of x that is not

allowed but if you write f of x where x is of type real and if you write f of x where x is

of type int, then C++ will know which function to use if you indeed have two separate

functions defined. So I am going to show you this file area.cpp in which I have written

such functions and let us get to that.

(Refer Slide Time: 2:48)

So here is the first definition of area and we are having area function area which is

going to written in double and its taking as argument a circle c. So, remember we said

that type of the shape, the name associated with the shape is the shape itself. So, you

can pass that shape over here and we do not want to copy that shape and therefore we

are passing the reference. But whatever we are passing it has type circle and it’s a

reference to a circle object.

Now inside this function we can extract the radius of that circle so there is a command

getRadius so I can write c.getRadius and that will get me that radius of that circle. And

now we know the area of the circle is PI r square. So this is a simple CPP name, the PI

stands for 3.1415192 whatever the expansion is to some large number of decimal

places and we just multiply pie by r by r and written the result. So this area, this

function expects u to send it a circle a reference to it and it will calculate the area and

return that value. Then I have an area of a rectangle so again what is expected over here

is a rectangle object should come, rectangle name should come but a graphical object

but what is actually coming over here is the reference to it. So this r really refers to the

graphical object in the calling function. And, so rectangle can be operated upon by a

command getWidth so that the command gets the width of the rectangle, and this

getHeight will get the height of the rectangle and if you just take the product you will

get the area. So, that is what this area does.

So in this main program I have first something which creates the canvas, then I am

going to create a rectangle. This rectangle is centered at 100-100 and it has width 50,

height 70. This circle is centered at 100-100 and it has radius 100 as well. Now the

finally I have command which will calculate the area of circle as well as area of the

rectangle. So, before proceeding further let us see if we can guess what this area should

be.

So, the radius of the circle is 100, so PI r square is going to be PI times 10,000. So it

should be something like 34,109 something-something so it should be that is what it

should be. And the area of the rectangle well the width and the height are 50 and 70 so

the area should be 3500. So let us see whether that what the program prints. So let us

compile this and run it.

(Refer Slide Time: 06:07)

So indeed the program has drawn the square and the circle, and this whole thing is a

500 by 500 canvas so it is centered at 100-100 as you might expect. And let us see

what area has it printed out. Yes, it has printed out 31415.9 and you may see the

3.14159 is the value of PI so that is just multiplied by 10,000. And the area of the

rectangle has indeed been printed to 3500 and that is correct because the width is 50

and height is 70 so let us click to stop that program.

(Refer Slide Time: 7:00)

So, here is the quick exercise, so the area function that we wrote was taking shapes as

arguments. But you can have additional area functions and you are asked here to write

an area function so that if one double argument is given it should be interpreted as

requesting the area of the circle with that radius. And if two double arguments are

given it should be interpreted as requesting the area of a rectangle with those sidelines.

So the code itself is not complicated but the point is that if you can define these

functions which take, which have different argument lists, in this case the argument list

is a double and for the first one and two doubles for the second ones, and in fact you

can have all the four functions existing at the same time.

Because the argument for the very first one was a circle, and for the second one was a

rectangle, and then the third one is a single double, and the fourth one is two doubles.

So all such, all four can be defined and depending upon what arguments you pass to the

appropriate function will be executed. So that concludes this entire lecture sequence so

let me make some remarks.

(Refer Slide Time: 08:34)

So, first I should observe that it is often useful to pass functions as arguments in a

function call and there are many examples of this. So, common examples are writing a

single function that calculates the roots so I will write a single function that calculates

the roots and to it pass the function whose root I need, so I do not have to write a

separate function to calculate the root of different mathematical functions and this goes

not only for roots, but also for numerical integrals or you might want some series.

So for solving series also you can do this and there we saw that you can pass functions

by specifying their name, or by giving the lambda expression and one method that I

have not discussed in this lecture sequence is a C style method.

So, the C language from which C++ has originated had a different method and that

method is a little bit more complicated and if you are using C++ you might as well use

the nicer methods. And I did not discuss it today but for completeness it is discussed in

the book.

Though, in this course we are not expected to know it. Then we said that C++ allows

default values for the last arguments in a function and then we also said that C++

allows defining many functions with the same name provided the parameter types are

different. So that concludes this lecture sequence and as always I will suggest to you

that please look at the chapter and the problems given at the end of the chapter and

please solve them for practice, thank you.

