

An introduction to programming through C++

Professor Abhiram G. Ranade

Department of Computer Science and Engineering,

Indian Institute of Technology, Bombay

Lecture Number 13, Part-3

Program Organization and Functions

Namespaces

Welcome back. In the last segment we discussed how to split a program over many files,

functions declarations and definitions and header files. In this segment we are going to

discuss Namespaces.

(Refer Slide Time: 00:37)

e

So, suppose many people cooperatively develop a single program. Now, it is possible that

several people may define functions with the same name. So, it is a little bit cumbersome for

you to coordinate if you are writing a small function that you say, oh I am going to use a

function called F, you please do not use a function called F as well. So, it is so I that

cooperation is that coordination is cumbersome and if you do not have the coordination then

you may have some name conflicts. So, how do we avoid this? This can be avoided using

something called as Namespace. A Namespace is basically a catalog of names. So, effectively

the “full name” of a function F defined in the namespace N is N::F . So, if F is defined in two

namespaces N and P then, N we can specify which one we mean by writing N::F or P::F and

there are other ways of specifying as well which we will see soon.

But basically now, we can have unambiguous ways of referring to different functions even if

their name is same, because their full name is going to be different. So, effectively each

programmer could use a different name space if there is need.

(Refer Slide Time: 02:21)

So, how do you define a Namespace? Declaration is simple, defining a namespace is simple,

you just write namespace followed by the name of that namespace. In this case the name is N

and then inside that block you put in declarations or definitions of names.

(Refer Slide Time: 02:41)

This creates a namespace with the name N and also defines or declares names inside it. You

can add more names into a name space, simply by writing namespace N again and putting

names inside that new block in the new position. A name g which is defined without putting

it inside a namespace is said to belong to the global namespace. So, all the names that you

have been defining so far are in the global namespace. So, where full name is ::g. So, you

could refer to then in this way but if you wish.

(Refer Slide Time: 03:27)

So, here is an example of using the namespace. So, first I’m defining a namespace N and it

contains declaration actually, it contains definition of g series. So I have put (…) to say that

entire definition, the entire body will go there. Similarly, there is the definition of lcm. Now,

in my main program, I need to write N::lcm because I want to access this lcm which is

defined in this namespace N.

(Refer Slide Time 04:10)

Now, there is something called the ‘using’ directive which comes in handy often. So, if you

have defined a namespace N and you have many names defined in it and you want to access

them quite frequently, so you may get tired of writing N:: all the time.

(Refer Slide Time: 04:31)

So, what you might do is you put the following (line), you might put the following line at the

top of your file. So, I say using namespace N, this is the line you put. Subsequently or for all

other references in that file, you will be allowed to use any name from N without having to

write N:: before it. So, N:: will become implicit.

(Refer Slide Time: 04:58)

So, if I write this directive then the previous program becomes like this. I will write

namespace N int gcd int lcm and then I have this using namespace over here. So, this using

namespace says when I use lcm over here it is implicitly interpreted as N::lcm and I will get

to the definition which is given in this namespace.

(Refer Slide Time: 05:31)

Alright, so what have we discussed, we have said that namespaces help many people to use

the same name and yet combine their work together if needed, then we discussed the using

directive, okay. In the next segment we are going to use C++ without simple CPP and we are

also going to conclude this entire lecture sequence. So, let us take a break.

