
An Introduction to Programming through C++

Prof. Abhiram G. Ranade

Department of computer Science and Engineering, IIT Bombay

Lecture 13 Part 2

Program Organization and Function

Splitting into files

Welcome back, in the previous segment we discussed that the main program is a function and we

motivated the need for splitting the program into function as well as into several files. In the next

segment we are going to in the rest of this lecture sequence actually, we are going to see how to

actually split programs into files and that is what is going to happen in this segment and then in

subsequent segments we will see things like how your program uses code written by others and

features that C plus-plus provides for that and also finally we will see how you can use C++

without simple CPP.

Ok so how do you split program split, split a program into many files?

(Refer Slide Time: 01:16)

Okay so a program may contain several functions and all of them need not be placed in the same

file, so if a code in file capital F calls a function little f then the function f must me declared

inside F, textually before any call to it. Now a function definition that we have been talking is a

declaration but that is not the only way to declare a function.

So, the definition could be in another file and so long as there is a declaration in the file capital F

which contains calls to this function that is enough okay, so every function must be defined in

just one of the files that are used for a program. But it must declared in all the files that make a

call to that function.

(Refer Slide Time: 2:26)

So what is a function declaration? Well it is essentially the definition without the body, so

declaration of the GCD function looks like int gcd(int m, int n) so after that you could have given

the body but that is being omitted in the declaration okay. Also acceptable is int gcd(int, int).

Now you may notice that this is really like declaration of a variable, so I might have written int X

okay so it looks like a declaration of a variable but it is the parentheses are saying it is not a

variable but because of those parentheses following the gcd the compiler can tell that oh this is a

very this is a function that we are talking about. So, basically that is what a declaration tells the

compiler. It tells that look gcd is a function and should the name gcd appears, appear later on in

this file, think of it as a function which takes 2 arguments and the arguments had better be of the

specified type.

(Refer Slide Time: 03:43)

So this way the compiler checks that subsequent uses of the name gcd adhere to what you have

said about gcd, again the general strategy over here is to say what gcd is and then check whether

you are using gcd in the manner that you have just described. This is also because we are worried

about making mistakes. So the compiler tries to prevent, tries to help you out and tries to see if

you are possibly making a mistake and therefore it needs to know what every name is over

whether it is a function, it is a variable and therefore, the declaration has to be given preceding

the use of that name.

(Refer Slide Time: 04:42)

Now if a file contains a call to a function but does not contain its definition, the compiler will

assume that it will appear elsewhere. In fact, that is the whole point of putting in a declaration, so

putting in that int gcd(int nm, int n) without the body okay. But the compiler will not be able to

compile it as a main program okay as a in fact unless the main program is there it will not be able

to compile but further more if some function body is missing again it will not be able to compile.

What it can compile your file into is what is a called an object module and we will see that.

To get an executable program all the object modules containing the call function must be linked

together only then you can produce an executable program. We said this long ago when we were

talking about how the hardware works but now you will see a little bit a few additional details

okay. The function declaration that we have talked about so this line, this portion, this or this is

called a declaration but it is also called the signature of the function or the prototype of the

function. So some examples, so here is an example of a program which is split over multiple

files.

(Refer Slide Time: 6:17)

So you can have a program in a consisting of a function in gcd with the body also given and

perhaps you can put it in the file gcd.cpp okay, you can also have a second file lcm.cpp a third

file main.cpp okay. So what is in these files? So the green portions are function definitions and

the red portions are the function declarations and each file you will see has a declaration,

declarations of the called function. So, in this file there is call to gcd and the definition the

function is not defined over here, but the function is declared in this file. So this is the

declaration.

So the compiler can compile this file at least partially into an object module. Then in this file

main.cpp, lcm is being called and it is not defined over here but there is a declaration saying that

oh it contains it has 2 arguments and in fact compiler can check that indeed 2 arguments of type

integers have been given. Now, if you have these files and want to compile and link them

together okay you would issue the command s++ main.cpp lcm.cpp gcd.cpp if you are operating

under Unix and these files were in your current directory. If you are operating, if you are using

the full IDE then you would have defined something called a project in which these files would

have to be present. But the contents of the files would have to be exactly these, that if file a uses

a function makes a call to a function and if the function is not defined there then there has to be a

declaration of it above the use or the call to that function.

If you want to compile each file separately, this is what you do you write s++ but you add this

compiler option -c which essentially says compile only or do not link lcm.cpp. So this produces

lcm.o which is an object module which you can think of as something which is partially

compiled. And if you have all this object modules then you can compile them together by writing

s++ again, s++ does everything as you can see the compiler does everything. You can write

main.o lcm.o gcd.o. So this will actually produce your executable.

Now, what you typically do is not quite this, what you typically do is that you write a program

say in a file called pgm.cpp. On Unix you compile it but the s++ command itself supplies all the

additional modules that you want, so if you are using square root that module is supplied, if you

are using simple CPP the modules required for simple CPP are supplied okay so this compilation

is really quite similar to this compilation or even this compilation even though you are using only

a single file.

So yeah, so this s++ is compiling your program pgm.cpp but you are also linking it to object

modules which are developed by others. So where are they? Well they are in some places that

this s++ knows and some of them might be present as libraries okay, so its not only object

modules that you can compile together you can also compile together libraries. So the libraries

might also get listed over here. So we are going to omit that detail because s++ places those

libraries for you, but they are sort of like object modules, they also contain code for functions.

Okay so for all this to work correctly your program must have the right declaration.

(Refer Slide Time: 11:12)

So if this is your program then it will better have a declaration of the function that you are going

to use. Now you may say that look I used square root, I used right, I used turtleSim, I used in it

canvas but did not put declarations to all those in my in the program that I wrote okay. So, there

is a different mechanism for putting in the declarations which now I am going to tell about.

(Refer Slide Time: 11:53)

So this mechanism is called header files. So it is tedious to remember what declaration to include

in each file, so it is tedious to remember what declaration to include in each file. So what do we

do instead? We put all the declaration into a file called the header file and include the header file

into every file that we use. So here for example is the header file gcdlcm.h so well I just made up

a name okay. So this file contains int GCD int LCM so it contains the declaration of GCD and

LCM.

And now the file gcd.cpp does not actually contain the declaration but it says include this file, so

all those declarations would go in okay, LCM similarly just includes this file and main also

include that file okay, so basically I do not, I am not worrying about oh include the declaration

for this function, I am not going to worry about this function, that function. I am just going to say

look whatever functions I need those and maybe be more than those are present in this header

file and I just going to include my header file and that will automatically bring in these lines.

So the directive include file name just copies the contents of that file into your file okay, so it

gets replaced by the contents of the name file. And it is acceptable if we declare functions that do

not get used okay, so for example in this if we include gcdlcm.h this file itself directly does not

need the declaration for GCD but it is ok to have it okay. It just says that GCD is a function

whether I am using it or is not important okay.

It is acceptable if have both declaration and then the definition, so that is going to happen over

here. So this include is going to be replaced by int gcd(int, int) which is just a declaration but it is

also going to contain a definition okay but that is okay we can a declaration and a definition. So

long as they are consistent ofcourse. We what we cannot have are 2 definitions, so 2 pieces of

code cannot be given. You will also have noted that there is another include over here, include

simple CPP. Now it is in this braces but anyway that simple CPP file is included it is picked up

from some specific places and that file contains the declarations of all things like turtleSim, right,

left okay also things yeah so all those things okay and that is why you have not been needing to

actually include put in declarations for all the functions that you have been using so far. And that

file simple CPP also includes and include file itself called cmath okay which contains the

declarations of square root sign and all of that. So the include files have been putting in all the

declaration that you really needed.

 (Refer Slide Time: 15:13)

So a little bit more on header files, header file customarily have the suffix ‘.h’ which is what we

just used they could also be ‘.hpp’ or sometimes they do not have any suffix that is also allowed.

If the header file is mentioned in quotes it is picked up from the current directory okay and if it is

mentioned in angle braces then it is then it is picked up from some standard place, for example

simple CPP is present in some in some standard place which the compiler knows about. So you

say include simple CPP s++ will pick it from that standard place.

(Refer Slide Time: 15:49)

Alright, so what have we discussed? We have discussed how to split a program over many files

and effectively how do you assemble a program out of functions in many files and I guess this is

really what is most relevant from for you because you are not going split a program but you are

going to use functions which are there in several program. So, you want to know how to use

those functions. Then we have discussed what are function declarations and definitions and we

also talked about header files. Next we are going to talk about namespaces which is a C++

feature which helps in writing program across multiple files. So we will take a break.

