
An Introduction to Programming through C++

Professor Abhiram G. Ranade

Department of Computer Science and Engineering

Indian Institute of Technology, Bombay

Lecture 12 Part 3 – Virahanka Numbers (Iterative Program and Conclusion)

Welcome back. In the last segment, we discussed recursive function to calculate Virahanka

numbers and we concluded that it was taking too much time and that was because we were

seeming to repeat work. In this segment we are going to see how to avoid that. So, what

exactly were we doing? And what should we do? Well, we should really not calculate

something more than once. Okay?

(Refer Slide Time: 0:48)

So, to begin with our function knows V(1) is 1 and V(2) is 2. So, our function was V(1) and

V(2). Okay. It then calculates V(3) and V(3) is calculated using V(1)+V(2). Okay. So, after

that you can calculate V(4) is V(3)+V(2).But notice that when we when we issue this call

V(4), we do not really need to recalculate V(3). If we could somehow remember what we,

that we calculated V(3) earlier then we could just use that value and V(2) of course we know.

So, in general we could think of doing this in a loop. So, in iteration i, where i goes from 3 to

D, we will calculate V(i) because for i equals 1 and 2, there is nothing to be done. Those

values are already known.

And how do we calculate V(i)? Well, V(i) requires us to take V(i-1) which we must have

calculated in the previous iteration and V(i-2) which we must have calculated in the iteration

previous to that and add up these two values. So, which means these values we could print

out if we wish. But we do not really need to print them out, if we are only interested in the

final V(D). But in any case, in ith iteration we should be remembering these values. These

values should be there so that we can add them up and we can generate V(i).

So, to keep these values V(i-1) and V(i-2), we will have two variables. So, we will have a

loop. We are now going to have a loop and in that loop, we are going to have 2 variables and

at the beginning of the ith iteration these variables will contain V(i-1) and V(i-2). And we will

also use a variable V(i) in which we will construct V(i).

So, V(i) is a variable, V(i-1), V(i-2) are going to be our variables and the important point is

that the beginning of the iteration i we want V(i-1) and V(i-2) to contain V(i-1) and V(i-2)

which were calculated earlier.

(Refer Slide Time: 3:41)

So, based on this we can create this program. So, this program is going to calculate V(D). So,

as we said we are going to have iterations going from 3 to D and at the beginning V(i-1) and

V(i-2) must have the values V(i-1), V bracket i minus 1 and V bracket i minus 2, so those

values must be there. And then we add them up to get the value of V(i).

Now I have to fill up, fill up the rest of the code over here. So, let us see, so in the iteration 3

when we first enter this loop, what do we need? So, we need, so we are going to calculate

V(3), i is going to be 3 so we want to calculate V(3) over here. So, at that point we need this

to be V(2) and we need this to be V 1, so these values will get set only above outside the

loop. So therefore, we should initialize these variables to 2 and 1 respectively. And then when

we go the next iteration of the loop, what happens? So, first of all in this iteration, what

happens? In the beginning we calculate this which is as far as the plan we were talking about

on the last slide and then we have to prepare for the next iteration.

So, for the next iteration what is it that we want? Well, the value that was V(i-1) in the

current iteration, so is the value of calculated in the previous iteration. But now for the next

iteration that will be the value calculated in the second previous iteration. So, that should

really go to V(i-2) and V(i-1) for the next iteration is the value that was calculated in the

current iteration and therefore that must become V(i). So, our loop must be this. And finally,

what should be returned?

So, at the end of this loop V(i) will contain V(D) and therefore we should return V(i) over

here, okay. Now if you look at this code you will see that this code works only for D greater

than 2. Basically, if D is equal to 1, what happens? This V(i) is not even defined. So, but for

for the other D it works fine and so, let us just put a comment to that effect.

(Refer Slide Time: 6:08)

Alright. Let us see. Let us run that program and let us see what happens with it. So, this is the

program, okay. So again, the function is what I just showed you, okay. And in the main

program I am going to have the same thing again. I am going to go from 2 to 50 as before. I

did not go from go with 1 because we know that this program does not work for 1, okay. And

as you can see again to accommodate the large numbers, I have had long ints, okay. D does

not have to be long because D does not contain long numbers, okay. So, the arguments to D

does not contain long numbers. So, that does not have to be long.

(Refer Slide Time: 6:49)

So, let us compile this. So, this time it produced an answer instantaneously essentially, so as

soon as I hit return the answer was there. There was no waiting at all. And that is to be

expected because in each iteration of the loop we are doing really very little work.

(Refer Slide Time: 7:20)

So, so there is this repeat and in this, oh, yeah so there is a slight change over here, we really

did not need those i’s and therefore we can also use repeat over here. So, you can compare

these two codes and see that they are really the same. But I could have put for here as well,

does not really matter. But the point is that we are having iterations of this loop and the time

required for each value, for each V(i) is exactly the same and therefore the loop runs really

fast, okay. So, we have done this and we were able to get V(D) to be calculated very fast.

(Refer Slide Time: 8:09)

So, what do we learn from this? So, we can see that recursion is a very powerful tool for

solving problems. Recursion helps us solve problems and discover algorithms, but the natural

recursive algorithm might be very slow. By examining the algorithm, by seeing what it does

we might be able to discover a better algorithm. Then we also saw that the recursion trees are

a nice way of seeing how a recursive algorithm works.

And I will leave you with an exercise: Write the program which draws out the recursion tree.

So, for this you need to take the ideas from the basic recursive Virahanka algorithm and also

the tree drawing algorithm. And you sort of have to fuse these two programs together, okay.

Now this sequence, these Virahanka numbers V(1), V(2), V(3) which are 1, 2, 3, 5, 8, 13 is

actually a famous sequence and it is well known as the Fibonacci sequence named after the

Italian mathematician, Fibonacci who lived, Fibonacci or Fibonacci, who lived in 12th century

AD. But Virahanka discovered it much earlier and we probably should be calling it the

Virahanka sequence or call these numbers Virahanka numbers, isn’t it?

So, with that we will conclude this lecture sequence noting some rather interesting facts about

recursion. Thank you.

