An introduction to Programming through C++
Professor Abhiram G. Ranade
Department of Computer Science and Engineering
Indian Institute of Technology, Bombay
Lecture 12_Part 2
Virahanka Numbers (Recursive Program)

Welcome back, in the last segment we discussed Virahanka’s problem.

(Refer Slide Time: 00:27)

What we have discussed

* Virahanka’s problem: Find the number V(D) of poetic meters
having duration D.

* We can work out by hand: V(1) =1, V{2) =2

» Working out larger V(D) is tedious and error-prone.
» We also know V(D) = V(D-1) + V(D-2) for all D> 2

* Next: A program to calculate V(D)

.
0
So this was about finding the number of poetic meters having duration D. In this segment we are

going to discuss a program to calculate V(D).

(Refer Slide Time: 00:39)

Program to compute V(D)

* Natural to use a recursive function.

* For D >2 we should use V(D) = V(D-1) + V(D-2)

* Clearly D=1, D=2 should be base cases.

int V(int D){ // Precondition: D > 0
if(D == 1) return 1;
else if(D == 2) return 2;
else return V(D-1) + V(D-2);

}

So it seems that it is natural to use recursive function, okay. So since you were told that for D
greater than 2, V(D)=V(D-1)+V(D-2) the natural, the recursion sort of stairs is in the face and we

were also told that for D equal to 1 what the values were for D equal to 1 and D equal to 2 and

therefore D should be the base cases. So, this might be a natural program to write.

So V(D) which is what we want to calculate, where the precondition is the D is bigger than 0. So
if D is equals to 1 then we return 1. If D equals 2 then we return 2, else we use this relationship,
that is it. So, the question is, is this a reasonable program? We just wrote it but can we be sure or

can we be, can we somehow check whether this is a good program?

(Refer Slide Time: 01:54)

Does this satisfy our 4 requirements?

int V(int D){// Precondition: D > 8
if(D == 1) return 1,
else if(D == 2) return 2;
else return V(D-1) + V(D-2);

1

]

+ Is the correct value returned for the base cases?

* Dothe level 1 calls satisfy the precondition?
- level 1 calls made cnly f D> 2

* Does the "problem size” reduce? Can it reduce indefinitely?
~ Dreduces in each call, but cannot go below 1,

* If the level 1 calls return the correct value, will the top level call return the correct value?
-~ WD) =V(D-1)+ W{D-2) for D>2

9

Well, so here is our program and in the last lecture we listed out some 4 requirements that we
should check when we write a recursive (algo) recursive function. So what were those? So first
all, our concern was, is the correct value return for the base cases? Okay first of all are there base
cases? So are there base cases? Yes, there are 2 base cases, okay, sorry before that this is one
base case and is the (current) correct value being returned? Yes, because it was specified in the
problem definition or we worked it out and for D equal to 2 is the correct value being returned?
Yes, we worked that out and that was 2 okay. Now does the level 1 call satisfy the precondition?

So which are the level 1 calls?

So this is one level 1 call, this is another level one call and what is the precondition? D should be
bigger than 0. So when we make this level 1 call, is this satisfied? Well, originally this was
satisfied for D. If D was 1, then we would have returned 1, if D was 2, we would have returned.
So when we come to this point, we know that D has to be bigger than 3, 3 or bigger. So then
V(3) minus 1 or something bigger than 3 even this number will be positive. So then that means
this precondition will be satisfied, and this number will also be positive because we said that D
has to be bigger than or equal to 3 at this point. So, even for this case, we will, even for this case

the precondition will be satisfied.

Now thus the problem size reduce? Can it reduce indifferently? So clearly in this case the

problem size is D, there is no other candidate really. So does it reduce? When we make the

recursive calls as it is reducing in the level 1 calls? Yes, it is going to D minus 1 and D minus 2.
But as it reduces can it go below 1? Can it go to 0? Well, we just said that, that when we make
the recursive calls the preconditions are satisfied and therefore they 0 is a limit, so the recursive
are the size cannot go to 0, cannot go below 1 and therefore the set of recursive calls will have to

terminate in some sense.

Final, the last check that we need to make is that if we assume that the level 1 calls returned the
correct value, then can you argue that the top level calls that the top level call is correct? Okay so
this is the top level call V(D) and we are assuming that these values are correct V(D) minus 1,
okay. So we have D minus 1 plus V(D) minus 2 so this is correct and this is correct. So in that
case are we supposed to return this? Well we got to this only if D is bigger than 2 and in that
case, indeed we are supposed to return this. And therefore, the top level call is going to be
correct if our level 1 calls are correct. So this really does look like a good recursive function.

Yes, so that is what | had written down over here.

(Refer Slide Time: 05:41)

Demo

* Virahanka.cpp

All right so let us now do a demo.

(Refer Slide Time: 05:43)

<simplecpo>

" 0{/) Peecoeditice: 0> 0

i = 1) retem §; Il:: 1)
else 1f(9 =) retum 2; oF5 LT
else{ -
= Y31} « VI0-2); ‘s .
mainl) -

r =1; 158; 1

cout << | <) -«:;q;l << endl; = .
} R

AU-c—F1 Virshewka.cpp ALLLL (Cod/L Atbrev) 5:53M 1.8
For isforsation sbost GM Emacs and the GW systes, type (+h (-2,

Okay so this is the program that | showed to you and | have the main program and | am calling V

of i. So I am just doing this for all value of i between 1 and 50 okay. So let us see how this goes.

(Refer Slide Time: 05:58)

=
8
|
X

2] 0N I!::
3] 46363 .

1
¢
o

P R VIE]
26} 156418
227 3T
28] 51429
29] 1390
30 146265
31} 17088
2] 3526578
331 S8 E=
34| e

38| MR

36) 24157817

37) 3see3ies

38| 83285386

39 WSS

48) 365530241

41) 87910%

42) 433854437

43} N8B

44) 113859310

48] 3838311903

48] 1ITI2I5673

*C -
w/Deshiop/sptel vesit : |

vt b |
f—
—

So let us run it, okay. So it is calculating answers pretty fast, but well now it seems to have
slowed down, slowed down, okay. So let me terminate it over here. Oh no-no 45, | think 44 it
took a long time, 45 maybe it will take even longer and even longer for 46. So let me not make

you wait through all of this but it is clearly the program has slowed down over here. So let me
terminate and (1) yeah.

(Refer Slide Time: 06:48)

0 = 1) retem 3;
else 1f(D = 2) retum 2;
elsy{
= Vi3-1) « VIO-2);

A-c—F1 Virshewka.cpp ALLLL (Coo/L Abbrev) 5:530 1.8

| forgot to tell you one thing which is that when we write this program, we are going to use long
int okay, why? Because as you saw, the numbers were getting bigger than what can be held in a
single word. So this will be long int and because of that you could print you could get all those

numbers correctly, okay.

Alright, so at this point we have a puzzle, we wanted to calculate the first 50 Virahanka numbers
but the program seemed to be taking too much time at about 45, okay so we need to figure out

why that is the case.

(Refer Slide Time: 07:29)

- —— - R s

Demo

* Virahanka.cpp

* Observation:
— Beyond D=45, the time for V(D) seems to increase a lot.

9

Yeah beyond D equals to 45 the time for V(D) seems to increase a lot.

(Refer Slide Time: 07:34)

o w—— - T —

Understanding the execution V(D)

* The execution of any recursive program can be visualized by drawing
its “Execution tree” or its “Recursion tree”.

* The execution tree is like the trees seen earlier.
* The root corresponds to the original call, say V(10).
* V(10) will make recursive calls to V(9) and V(8).

* So we will have branches going out of the root to “nodes” for V(9)
and V(8).

* From those we will have further branches according to the further
recursive calls that get made.

* No branches leave the nodes corresponding to V(1), V(2).

Okay, so for that why that is happening? Let us try to understand the execution of V(D) okay.
Now the execution of any recursive program can be visualized by drawing its execution tree or in
this case what might be called its recursion tree, okay. The execution tree is really like the tree
seen earlier, okay. The root correspond to the original call say V(10), then V(10) will make
recursive calls to V(9) and V(8). So we will have branches going out to nodes for V(9) and V(8).

From those we will have further branches going according to the further recursive calls that get

made and V(1) and V(2) returned without recursion. So, no branches leave the nodes

corresponding to V(1) and V(2). So what | am going to do now is to show you this recursion

tree, okay.

(Refer Slide Time: 08:43)

Demo

* Vtree.cpp

=)

So for sum execution of Virahanka and in fact that | am going to do by running another program.

(Refer Slide Time: 08:54)

A -arqgusent] s =

e) [-Wunused-c B

tluge -I(cc:/l.‘

-argusent]
)’ [-Wunused-c
STEEELEES]‘ e £ NN wlecpp/inclod
~argusent |
EEAER i i)) [-Wungsed-c
ide ~I/opt/X11

-argueent]
) |-Wunused-c

POV IIOT T TSyTTY ToTye” o
+ ge+ Viree.cpp -Wall /Users/sshiran/sisglecpp/ Lib/Libsprite,a ~L/Users/sbhirany
sisglecpp/incloge ~L/opt/N11/knclode ~L/optiX21/ 11 ~1X1) ~5td=ce+i]
~/Deskrop/sptel fvesid ».0ut

~Desktop/eptel eetf & /o 0ut

~/Desktop/aptel mek : . /2.0t

:le.o rectangl

So | have written a program which will draw the execution tree or the recursion tree of
Virahanka, okay. So let us see how it gets drawn. So this is the recursion tree, okay let me
explain what is going on. So there are 2 sets of numbers appearing on every node, okay. So the

red numbers are the numbers which are the arguments to the call.

So this is asking for V/(8) to be calculated. In order to calculate V(8) there is a call made to V(7)
and also to V(6) then to calculate V(7) there is make a call is made to V(6) and also to V(5) and
so on. And the blue numbers are the results, okay so these are the arguments, the red numbers are
the arguments to Virahanka and the blue numbers are the results of the cause or this is V/(8), this
is V(7), this is V(6) and so on, okay. Let me run it again so that you can see the order in which

the numbers get printed.

So first all the red numbers will get printed that is because first | will know only the arguments.
So in order to calculate V(8), | need to calculate V(7). But the blue numbers will get printed
when from bottom up so to say as soon as this Virahanka returns then you know that the result
over here is a 1. When this returns you know that the V(3) is 3 and so on. So here finally when
everything is done 34 will get printed indicating that V(8) is 34. So let me just run it again so that

you can see the order in which things are happening.

Okay so right now only on the left side, only the arguments are known and now as things get

built up then the results are also known, that the values of V are also known, okay. So now let us

look at this and let us see if we can find anything interesting, indeed there is something very
interesting in this. So we want to calculate V(7) and this sub-tree is what is useful for calculating
V(7). So this sub-tree is responsible for calculating V(6). But even while calculating V/(7) we had
to calculate V/(6), we did calculate V(6).

So this is that calculation and what | want you to notice is that this calculation is exactly the
same as this calculation, and that is really not good because this work is exactly the same as this
work and we duplicated it over here. But that is not all, things get much worse. So for example,
let us look at V(5), this sub-tree sorry, let us look at V of what this number is? V(4) okay so let
us look at V(4). So we want to calculate V(4), so that is what this sub-tree is doing. But VV(4) is
being calculated here as well and here and here and here. So V(4), the calculation of V(4) is
being done in many-many-many places. So clearly something is wrong, | mean if you want to
calculate V(45) in this manner, several-several Virahanka numbers will be calculated far too
many times and in fact that is why it was taking so long to calculate the Virahanka of 45. Of
course everything is taking long but that length really shows up when you get to 45, okay.
Alright, so what can we do?

(Refer Slide Time: 13:26)

Observations from Vtree.cpp

{ydvdy 4y i)
|

il

9

Okay so first of all let us go back to our slides. Yeah so, we said that the (several) that several

Several subtrees are doing the same calculation!

sub-trees are doing the same calculation.

(Refer Slide Time: 13:43)

What we have discussed

* Recursive function to calculate Virahanka numbers V(D).
* The function takes a lot of time for D > 45.

* Execution tree or recursion tree show that we are performing
the same calculation several times.

* Next: How to avoid duplication of work

'§ ’)

And so what have we discussed at this point? We have discussed recursive function to calculate
Virahanka numbers okay, V(D) and we observed that the time takes, function takes a lot of time
for D greater than 45 and when we plotted the execution tree or the recursion tree it shows that
we are performing the same calculation several times. So in the next segment we are going to see

how to avoid this duplication of work. So before that will take a quick break.

