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Recursion  

How to think about recursion  

 

Welcome back, in the previous segment we discussed recursive objects. In particular we 

discussed trees and how to draw them. And for this we used a recursive function. In this 

segment, we want to say something about how to think about recursion. And after that we will 

conclude this (segment of) sequence of segments.  
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How do you think about recursion? On the face of it recursive a program seems very complex 

when it executes typically multiple calls are in progress. And how do we reason about all of 

them? How do we even visualize what is going on? So the good news is that we do not need to 

do any such visualization, there is a much more direct simple way of thinking about recursive 

algorithms.  
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So, let me begin with some high level ideas. And let me first consider the case when you are 

trying to design the recursive algorithm. Now, you may think that designing recursive algorithms 

is tricky, and indeed Euclid's algorithm is pretty tricky. However, if you are dealing with 

recursive objects, then recursive algorithms are quite natural. And you may well find yourself 

designing such algorithms.  

So, how do you do this? Well, you first attempt to solve the problem given to you by 

constructing and solving a smaller problem of the same type or what you might more accurately 

call a smaller instance of the same type. And I want to observe that this is exactly what we did 

for GCD as well as for drawing. So, when we wanted to solve, when we wanted to find the GCD 

of M and N we instead requested to find the GCD of N and M mod N and why did we do this? 

Because, these numbers in fact smaller than the given numbers. So, in some sense, we are 

reducing, we are simplifying the problem or we are reducing its size. So when I say size, I mean 

it in a metaphorical sense. So, we are reducing its size in some sense.  

Even in drawing, when we were when we were asked to draw a tree which had L levels, we 

reduced it and we said oh let us first draw trees which have just L minus 1 levels. So, again this 

is a simpler problem in the sense this is a smaller tree that we are going to draw, it has fewer 

number of levels. So, if you can do this ok. So, if you can say that I want to solve this big 

problem, but I want I can break it up into problems which are of the same type, but smaller in 



some sense, then you have already, already taken the first solid step towards designing the 

recursive algorithm. And then you should be able to solve the simplest instances directly. So, that 

is the second step, ok. So, for example, in the case of GCD this was the simple instance if M was 

divisible by N, then you can directly say that N is the GCD or in the case of drawing if you 

wanted to draw a tree with 0 levels, then you can directly do it, well actually in this case, that is 

nothing to be done. But that is trivially doing it.  

Now, I want to say something about how do you think of a recursive algorithm that is given to 

you by somebody? How do you understand it? So, the first step is sort of the analog of this step 

over here. So, can you sort of interpret or is the designer telling you that look, this is the problem 

size that is reducing in successive calls. So, that is the first question. And let me make this 

discussion more precise. So, for the GCD, you can argue that this second argument is always 

reducing, as you execute the program. It does not have to be the second argument. It could be 

some complicated function of the arguments in general, but in this case it happens to be the 

second argument. And for drawing, it is in fact the very first argument. So, here it was L then we 

said that this tree could be drawn by drawing several trees with L minus 1 levels. So in fact, here 

you have you can think of the second argument and the first argument as the problem size. So, if 

I give you a recursive algorithm, then you should look for a problem size in it, something that is 

reducing as you do the recursion. And then the question that you should ask is, will be eventually 

get to problem sizes to problems that are solved without recursion?  
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All right, so now we are going to look at these things in a little bit more detail. And so, for that, I 

will need some terminology. So I am going to define something called a top level recursive call. 

So this is the call made from the main program or the first call made to the recursive function. So 

again taking examples, for the case of GCD the top level call is the GCD of M, N or this is in 

fact you can think of this as the call as identified by the signature of the function, and for the 

drawing it is this call, so this would be the call that could be that in the signature of the function, 

then there are other level one recursive call, so, these are the calls which are made directly while 

executing the top level call. So for GCD the next call was GCD of N and M mod N. So this is the 

level 1 recursive call for this top level call and for drawing, for drawing this tree, the recursive 

call was this and also this, so these are the two level 1 recursive calls, ok. So, this is just notation 

could define level 2 recursive calls in a similar manner, but I do not need to. So, the whole point 

of this discussion is that we can just think about one level of recursion to understand what is 

going on.  

Then there is a notion of a base case. So, these are simply the input values for which the top level 

call returns without recursing. So in the case of GCD if M and N are such that M is divided 

perfectly by N then that is a base case, because in this case you can return N directly as your 

GCD. So M, N such that M mod N is 0 are the base cases for the GCD, GCD function. Then for 

drawing similarly, if L 0 then you are not going to recurse, you are just going to return in this 



case without doing anything but that is that is how you that you are going to return. So L equal to 

0 is the base case; L equal to 0 and other arguments, whatever they might be. 
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Some more terminology. So we have defined this earlier actually, but I am just going to restate it. 

So for every for every problem for every call really, there is a notion of a precondition. So this 

simply says what are valid values for the inputs. So in the case of GCD, the two arguments have 

to be 0 only then this is a reasonable call, only then is the GCD define.  

And similarly for drawing, the number of levels must be greater than or equal to 0. And the 

height and the width have to be greater than 0, greater than or equal to 0. And RX and RY, the 

coordinate where, the position where, the route is to be placed, well they could be negative, ok. 

So, that might just force the drawing of the screen. Or if you want it inside a screen then you 

should say ok I want I want the tree to be inside the screen. So, I will require these also to be 

positive and in fact maybe smaller than the size the so, they should be smaller than the width of 

the screen, they should be smaller than the height of the screen, ok. But we are just ignoring 

those conditions for now.  

Then, there is a problem size and we gave an example of this, but let me just say a little bit more. 

So this is something which is indicative of the amount of work needed to find a solution. Or this 

is something which suggests how difficult or how complex this problem is. So we said that the 

number of levels is indicative of how difficult the problem is - the more the levels, the more 



work period and similarly, for GCD the values of these numbers, the magnitude of these 

numbers are indicative of the problem size, but more specifically, we looked at the second 

argument this N. So, this we said was the problem it could be considered the problem size.  

And they should be chosen creatively. And as I said, this is how you might choose. So there is 

no, there is no obvious way of what, what it should be, but as a designer you would have to say 

that look, I want to reduce this, because if I reduce this then I can I can recurse.  
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So now, I want to say what you need to do to verify that a given recursive function is a 

reasonable function. So the first thing that you need to check is whether there are any base cases. 

So if there are no bass cases, then clearly your program will not terminate and therefore, base 

cases must be there. And then, for those bass cases, function must produce the correct results. So, 

that is one check that you have to make. So, for the GCD, the base cases were values of M, N 

such that M mod N equal to 0. So in this case, the answer was N, is that correct? Well, yes, if M 

is divisible by N, then N must be the GCD. So, which is being returned and so the program is 

working correctly for the base case base cases. 

For drawing, the base case was L equal to 0 or maybe I should write L==0 over here. But in this 

case, what did the program do? It did nothing, ok. Was that correct? Well, if the tree has 0 levels, 

then it is an empty tree and so nothing should be drawn. So even here, for both of these 



programs, this is how you would check that the bass cases that there are bass cases and they are 

being correctly handled.  
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Then we turn our attention to the level 1 recursive call. So, first thing we should check is whether 

they are valid? So, are the arguments in the level one calls valid? Or in other words, do they 

satisfy the preconditions of the functions? So, in the GCD the top level call was GCD of M and 

N and the level 1 call is GCD of N and M mod N. So, what are the preconditions here? So, we 

require that the argument must be non-negative integers, so these must be non-negative integer.  

So, can we argue that these are non-negative integers? Yes, N must be bigger than 0. Why? 

Because N is an argument to the top level call also. And the top level call we are assuming 

satisfies the preconditions. So assuming the top level calls satisfies the preconditions the level 1 

call must satisfy the precondition. So, which is what we can argue over here. And what about the 

second argument? Well, if you go back to the code you will see that this level 1 call is made only 

if M mod N is bigger than 0, because if it is equal to 0 then we just return N, so only if M mod N 

is bigger than 0, then we make this call and therefore, this argument must also be positive. So, in 

other words, we have verified that the preconditions are correct.  

What about drawing? The level 1 calls are these - so the original call, the top level call was had L 

levels, here we have L minus 1 levels. So, are these are these arguments satisfying the 

preconditions? Ok, well level one calls are made only if L greater than 0. So if L is greater than 0 



than L minus 1 must clearly be greater than equal to 0 or in other words L must be bigger than or 

equal to 1. So, so, this argument must also be bigger than 0. So, we have checked that this 

argument must be bigger than or equal to 0 sorry, bigger than or equal to 0. And you can check 

and I am not going to go through it right now, but you can check that these other arguments will 

also satisfy the required preconditions.  
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Then, we come to the next check that you should make. So, the next check is that does the 

problem size reduce and can it reduce indefinitely? If it cannot, if it can reduce indefinitely there 

is a problem, if the problem size does not reduce there is a problem. So, the answer to this first 

question should be yes, the problem size does reduce, but can you reduce indefinitely? No, it 

should not, it should not be possible to reduce the problem size indefinitely.  

Alright, so the GCD level 1 call is GCD N, M mod N and top level call was GCD M and N. And 

we said that this second argument is the problem size So, second argument has reduced, why? 

Because originally it was M, N so it was N and now it has become M mod N, and we said that 

this was the problem size and M mod N is certainly smaller than N, so the second argument has 

reduced. So, that is a good thing.  

Now, can it reduce indefinitely? Well, the remainder has to stay above 0. So it means that it, it 

cannot reduce indefinitely, ok. So this essentially saying that look, you cannot have unlimited 

indefinite recursion, you cannot just have one call after another because in every call, this 



argument is going to reduce. But if it reduces, then eventually it is going to go down to 0 which 

is not possible. So, the answer to this question is indeed yes and no for GCD, so that is a good 

sign.  

Drawing: So, the level one calls are these ok. And we said that the first argument was the 

problem size. So has that reduced over here? Well, in the original or in the top level call it was L 

and it has become L minus 1. So it has indeed reduced, can it reduce indefinitely? Well, it cannot 

become negative, because we are checking if L equal to 0 then we do not make a recursive call. 

And so this cannot become negative. And therefore, again, we have checked that this function is 

a good function. The problem size is reducing but it cannot reduce indefinitely.  
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The last requirement to check is will the top level calls returned the correct results if level 1 calls 

do? So GCD, we know that the GCD of the arguments to the top level call M and N is the same 

as the GCD of the top level calls to the level 1, the GCD of the, the level one recursive call 

which are N and M mod N. So the GCD of the arguments to the level 1 recursive call is the same 

as the GCD of the arguments to the top level call. And now what does the function do? So the 

function is going to return the GCD N M mod N, ok, if it is, if it does this correctly, ok, then the 

top level call will be correct. So, we are not checking whether it is going to correctly return this 

but it is returning this, ok. If this is correct then this will also be correct because they are exactly 

the same thing. So, we have checked this for GCD. 



In the case of driving the level 1 calls ask for a small smaller trees to be two smaller trees to be 

drawn. Ok. And we had to check that the two smaller trees are drawn in the right position. So, 

what happened there? So yeah, so, so we asked we wanted to draw a level L tree and we said that 

oh if you want to draw such a level L tree, then we can do that by doing by doing these small L 

minus 1 level trees, ok. So, if those were correct, then our program or this, this function simply 

drew the branches in the right position.  

(Refer Slide Time: 19:22)  

 

So, what it was doing was so, we wanted to draw a tree starting from this point. So it said look, 

you first draw two smaller trees over here. And then in the top level call, you just do this we just 

drew these branches. So, if these trees got drawn correctly, then we know that oh there, there are 

just these two branches to be drawn and the top level call is drawing them correctly. So 

therefore, the total thing must be correct.  
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Alright, so let me summarize this part. So how do we check if a recursive function is correct? So, 

what should we check in order to do that? First we should check that there are base cases and 

correct, correct results are obtained for the base cases, then we should check that the level 1 

recursive calls satisfy the preconditions, then we should check that the problem size reduces, ok, 

that there is such something called the problem size and that it reduces, but the code is such that 

it will not it is it is not possible that it can reduce indefinitely. And finally, we should check that 

if the level 1 calls work correctly, then the top level call will also work correctly that is it.  

In particular, what is it that we do not need to argue? So, we do not need to argue explicitly that 

the level 1 calls, in fact work correctly. Ok? We do not need to do this. We do not even need to 

think of what the level 1 calls do. Are they going to make recursive calls? Are they just going to 

return the result directly? We do not have to worry about it. So, basically what is going on is that 

these first three points are ensuring for us that this computation is going to terminate eventually.  

And this last point is going to say that look, if the recursive calls were correct, then we will 

return the correct answer. Ok. And this really this whole thing together says that effectively, not 

only does the top level recursive calls call works correctly, but it effectively proves that the level 

1 call works correctly level 2 call works correctly, because this argument really is applicable to 

all the calls, ok? And we do not really but we do not really have to worry about that we do not 

have to think about all the calls, ok.  
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Alright, here is an exercise for you. So, I give you this function, and there are it has its 

precondition and the post condition that is what it is supposed to be returning, ok. So, I want you 

to tell me whether this function is correct, ok, or whether there is a problem over here. Now, you 

should apply what we have discussed in this segment and tell me where things go wrong, ok. 

This is a bit of a trick question. But the questions the strategy we decided enable you to say what 

is wrong, to figure out something is wrong and say what is wrong.  
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That brings us to the end of this lecture segment as well as the sequence of segments. So, I want 

to make some concluding remarks about recursion in general. First, I want to observe that 

recursion allows many programs to be expressed very compactly. For example, GCD recursive 

GCD is certainly more compact than iterative GCD. The idea, that the solution for large problem 

or a problem whose problem size is large can be obtained from the solution of a similar problem, 

a similar smaller problem of the same type. I should really have the word smaller problem here. 

This idea is very powerful, ok, it is.  

Euclid probably use this idea to discover his GCD algorithm. He probably did say it himself that 

look, I want the GCD of these large numbers. Is it sufficient if I find the GCD of some smaller 

numbers instead? But, the moment you take this single step you can, you are implicitly 

developing a capability of applying it again and again. And that is exactly what recursion gives 

you.  

And recursion is also very natural, in fact, much easier to understand and much more natural, 

much less clever for objects which have a recursive definition, say for example, trees. And here 

we saw tree drawing as an example. To understand, why a recursive function works, we need to 

make a few simple checks outlined earlier and I just want to observe that some programs can be 

written recursively and iteratively.  



So for example, GCD or the factorial, but some others are best written recursively. So for 

example drawing trees, it will be pretty complicated to write this program using iteration or 

rather I should say write this program without recursion. So, that concludes our discussion of 

recursion. It concludes this sequence of segments. Thank you. 


