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Hello and welcome to the NPTEL course on an introduction to programming through C++. I am 

Abhiram Ranade, this is lecture sequence 3 of week 3. The reading for this is Chapter 8 of the 

textbook.  
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The goal of this lecture sequence is to learn methods for performing common mathematical 

operations. So we often need to evaluate mathematical functions such as sin x, log x and we 

often also need to integrate functions. So these things can come up in Engineering or Science or 

even mathematics. And integration can of course be performed symbolically but sometimes it is 

not possible to get a closed form solution. In that case we can do numerical integration. So 

integration is useful intrinsically, but in addition we can also cast the problem of evaluating 

certain function as an integration problem. So we will see that soon. 

Finding roots is another important mathematical operation. And of course we have seen 

examples of such things, quadratic equations, solutions of simultaneous equations. So in general 

the goal here is to find an x such that f(x) equal to 0 is satisfied. And of course we may have 



several x that we might want to find simultaneously. But here let us consider we have an 

equation in 1 variable and we have to find a solution for that single variable. So this is an 

intrinsically useful problem, but in addition as we will see we can cast the problem of evaluating 

certain functions as root finding problem. 

Now all these problems have methods which will give approximate answers. And in fact, exact 

answers are generally not possible for any of these problems. And by that I mean exact answers 

which use a certain finite number of arithmetic operations. However, the method that we 

describe will have the property that by doing more and more work we can reduce the error as 

much as we want. So we can make the error be as close to 0 as we want, but for that we might 

have to do more arithmetic operations. So there will be some kind of a tradeoff.  

On the other hand, the programs that we will write for doing these computations will be 

extremely simple. They will just involve 1 loop and maybe 2, 3 variables. So in that sense they 

will turn out to be good problems for developing and practicing your programming skills. 
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So here is the outline of this lecture sequence. So first I am going to talk about methods based on 

Taylor series, then I will talk about numerical integration, then I will talk about a method called 

the bisection method and then a method called Newton-Raphson method.  
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So let me start with an example for a Taylor series. So the question over here is how do we 

calculate functions such as sin x, cos x, ln x, tan x whatever square root x. Now, it turns out that 

these functions can be expressed as a sum of infinite terms. So let me give an example right 

away. So sin x can be written as x–x3/3!+x5/5!-x7/7!+, as you might guess x9/9!-x11/11! and so 

on. 

So as you can see the power of x increases by 2 as we go from the from one term to the next. 

And the factorial also increases by 2. So you can see that there is a very clear pattern. And the 

nice thing about this is that each term is easy to evaluate. So x^5/5! can be evaluated by doing 

say 5 multiplications and 5 divisions. And another very important and nice thing is that even if 

we take the first few terms we do get a fairly good answer. And if we want a better accuracy we 

just have to take additional terms.  

So this is very good, but in fact it has an even nicer property; which is that we can get a good 

estimate on how bad our error is. So suppose, we evaluate this sum to the first k terms. Then we 

can prove, we are not going to do it in that in this course, but it is possible to prove that the error 

is going to be smaller than the k plus 1th term. So if we use the k terms, then the next term 

actually just even tells us the bound on the error.  
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So let us try it out let us see how we can write a program to compute the value of sin x. And you 

may you may observe perhaps and it is true the program is going to be similar to our calculation 

of e, the base of the natural logarithm that we did earlier. So let us compute sin x using this 

formula, this infinite sum. So our plan is going to be that in the kth iteration we will add the kth 

term of the series to a running sum which is initialized to 0. In some sense this is similar to the 

plan we made for calculating the value e, sometime ago. So, let us use t sub k to denote the kth 

term of this series, for k equal to 1, 2, 3 and so on. So looking at this sum we can say that t1 is 

equal to x or which we might in fact write as x^1/1!, t2 is equal to x^3/3!, but there is a minus 

sign over here, t3 is equal to x^5/5! and I will just write a plus sign over here just to emphasize. 



And so the point is that the first sign is plus, then there is a minus, then there is a plus and so on. 

So the plus and minus signs are going to alternate.  

Alright, so these are the terms and now I can write this tk as -1^(k+1). Why? Why k+1? So, if I 

just wrote minus 1 to the power k then minus 1 to the power 1 would give me a negative number, 

so I will write minus 1 to the power k plus 1. And the minus 1 to the power increasing power will 

make sure that signs will alternate.  

Then I have x^(2k-1) let us check whether this is correct. So for k equal to 1 this gives 1 and then 

there is 1 factorial over here. So for K equal to 2, this 2k-1 will give us 4 minus 1, 3 which is 

right upon 3 factorial and so on. So tk is indeed this. So these are the terms that we are going to 

calculate in subsequent consecutive iterations. And we are going to add them to a running sum 

which we are going to initialize to 0 at the beginning. Then we know that t1 is given to us as 

input. So t1 is available to us at the beginning of the first iteration. So we would like t2 to be 

available at the beginning of second iteration, and t3 at the beginning of the third iteration and so 

on. So our plan is something like this at the beginning of the kth iteration, we will ensure 

somehow that we have tk in variable capital T. We could have made a different plan, we could 

have said that we just want tk minus 1 in the capital T at the beginning of the kth iteration. And 

in the kth iteration we will somehow calculate tk. So that plan will also work, it will give rise to a 

different program. So here you are just going to stick to the plan that I have written down over 

here. Which is that at the beginning of the kth iteration we will ensure we have tk invariable T. 

And then that means that at the end of iteration k what should we have? Well we have said at the 

top that S must equal the sum of the first k terms, so including tk, and so tk should get added to 

S. And for the k plus 1th iteration, we would like capital T to have tk plus 1. So therefore, at the 

end of iteration k we must make capital T equal to the k plus 1th term or tk. And what is this tk 

plus 1, well I am going to substitute k plus 1 over here. So I am going to get a k plus 2 over here. 

And then this is going to be 2k minus 1. So if I substitute k equal to k plus 1 over here, then I 

will get 2k plus 1 over here. And then similarly, I will get 2k plus 1 factorial over here.  

So somehow, I have to get into variable capital T, this value, whereas originally in capital T I 

had this value. How do I do that? Well, if I observe these two values, I can see that they are not 

that different. So to what extent are they different? Well, here there is an extra multiplication by 



minus 1. So I should multiply this term by minus 1 if I want to make look it like this. But that is 

not enough there is x to the power 2k minus 1 over here, and I want 2k plus 1 over here. So I 

should also multiply it by multiply it by x square. And I had 2k minus 1 factorial over here. So if 

I multiply it by 2k and also 2k plus 1 or rather it is in the denominator. So if I divide it by 2k and 

2k plus 1 I will get this. Another way of stating the same thing is that tk plus 1 is tk times 

whatever factors I mentioned earlier. So I need a minus 1 and then I need an x squared and then I 

need to divide by 2K and 2K plus 1. So what needs to happen is that I already have tk and that 

has to be modified a little by multiplying or dividing by these terms. Once I do that I will get tk 

plus 1 in capital T as I want.  

So in iteration T what is it that we are supposed to do? We are supposed to add the value that we 

have at the beginning in T into S. And then we are going to multiply T by this term over here. So 

T originally contain this. So when we multiply it by this term it will contain tk plus 1, which is 

exactly what we wanted over here. So this allows us to write a program. 
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So we are ready to write a program. So we will declare a variable x and read it, this is the 

variable whose sin we want to calculate. So let us print out a message saying what exactly we are 

doing. And then we wanted a variable s in which we are going to accumulate the sum, and a 

variable t in which we are going to keep the successive terms of the series. So the first term is x, 

so which is how we initialize t. Then we are going to do this for 10 iterations. So we could have 

chosen different numbers, but 10 is as good as any. So in the first iteration we want sum to be 

initialized to 0 which we have done. And we want t to have the value of the first term of the 

series which also we have done. Then, inside the iteration we just said that we are going to add 

the term to the sum. So we write s equal to s plus t. And then we want to calculate the next value 

of the term. So the next value of the term we said can be obtained by multiplying the previous 

term by -1 and x square and then dividing by 2k and 2k+1. So which is what we have done over 

here.  

So at this point we have evaluated the sum to k terms. So we are going to print that. Just to see 

how the sum changes as the number of terms increases. So this is the number of terms k and we 

have evaluated the sum and that value is over here. That is not complete and we can also print 

out the error estimate. So as we said the error estimate is nothing but the new term value that is 

what happens to be the case for the sin x series so we are going to print that so when we run this 

program we will see how the sum is changing or how our calculation of sin x is progressing, but 



we will also get an error estimate. So we will see that look the error in this current in this current 

value that we have  computed is at most how much.  

So that is the loop and then at the end what we are going to do this we are going to print out the 

value of sin x from the C++ library function. So there is a C++ library function called sin. And 

we apply it to x and we are going to get that value. And this is kind of the gold standard value or 

the value which we can regard as the correct value. And we will be able to check whether our 

value is the same or different from this value. So that is the end of the program. 
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So before we go to Taylor's theorem let us execute this program and see what happens. So this is 

our program, this is the program that we had typed. So let us try running it. So let me first 

compile it and let me run it. So let me give a value of sin so let us say I give the value 0.1. So let 

us see so what does it say? So for 0.1 the value calculated is 0.1 itself and the error estimate is 

already not so bad. The error is at this point just about 0.0001. So already our value is pretty 

good. But if we go to the next step, the error estimate goes down even drastically, very 

drastically and our value comes becomes something like 0.998. And then we can see from the 

third term after adding 3 terms our answer continues to remain the same basically. So very little 

improvement happens. So what has happened over here is that we have pretty much got the 

correct answer in just about 3 terms. And we can see that this is the answer that the library 

function is also going to give us. So in 3 terms we have got the correct answer.  
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Let us just run it one more time, maybe for a different value so let us say 0.5. So here the error is 

a little bit worse after the first iteration and also the second iteration, but from the third iteration 

onwards the error seems to be really negligible. And from the fourth iteration the value is exactly 

the value that the library function gives. And of course the error is small. So this seems pretty 

good. This series is giving us quite good results. 
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So now, let me talk in more general terms. So we just did something for sin, turns out we can do 

something similar for many other functions. So Taylor's theorem is what allows us to do this. 

And Taylor's theorem says that many interesting functions can be written in the following form. 

So f(x) can be written as f(x0)+f’(x0), so the derivative of the function evaluated at x0, times x-

x0+f’’(x0), or the second derivative of f evaluated at x0, times (x-x0) squared upon 2 factorial 

plus f’’’(x0) times (x-x0) cubed upon 3 factorial and so on. 

Now this equality holds assuming we add up infinite number of terms. If x is within some 

particular distance of x0, and this distance is called the radius of convergence. So this is some 

distance that we can estimate mathematically and so long as x is close to x0 as compared to this 

distance, then this theorem, this expression is correct.  

Now, why does this expression help us to evaluate f(x)? I mean sin x? Why does it, why would it 

help us to evaluate sin x? The point is that is you can often choose x0 such that not only is it 

possible to evaluate f(x0), but also we can do it for f’(x0) and so on. f’, f’’, and f’’’. So we can 

often choose x0 such that it is possible to easily evaluate f and its derivatives of x0. So let us take 

the example of sin, so we will choose x naught equal to 0. So then, what we know? So we know 

that f of 0 or sin of 0 is 0. f’(0), what is the derivative of sin x? It is cos x. So cos of 0 is actually 

1. So again we could evaluate the derivative of f(x) at x0 equal to 0. What about the second 

derivative? The second derivative of sin is -sin and again at 0 -sin is 0.  



The third derivative is -cos. But at 0 it is -cos of 0 is -1. After this the pattern is actually going to 

repeat, the fourth derivative is going to be cos and so it is going to be 0, 1, 0, -1, 0, 1,-1 and so 

on. So where does that leave us for sin? So sin(x), if you substitute x0 in this you are going to 

f(0), so you will get a 0 over here. Then over here you are going to substitute 0, so f’(0) is you 

are going to get a 1 over here. And this is 0 so you are going to get an x over here. So you got an 

x. Then for f’’, f’’(0) is 0. So this term will go away, f’’’ is minus 1, so we are going to get a 

minus term over here and there is going to be an x minus x0 cube term. But x0 is 0 so you are 

going to get x cube upon 3 factorial. And as you can see the even terms are going away and the 

odd terms are coming out with alternating signs which is exactly what we started off with before. 

So what we did was exactly an application of Taylor's theorem. And it turns out that this will 

work no matter what value you substitute. So if you go to large enough terms this will get very 

very close and in the limits it will become exactly f(x). 
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Alright, so what have we discussed? We have discussed that Taylor series are available for many 

functions. And in fact I will ask you as an exercise to construct the series and write down the 

program to calculate cos(x). And Taylor series is just one infinite expression which has been 

used for calculating math functions. But people have written similar infinite expressions, say 

infinite products or continued fractions. And these can also be used to evaluate mathematical 

expressions. So these are discussed in the book and in the exercises in the book. So we will stop 

here. 


