
Introduction to Programming through C++

Professor Abhiram G. Ranade

Department of Computer Science and Engineering

Indian Institute of Technology Bombay

Lecture No. 4 Part - 1

Program Design

(Refer Slide Time: 0:21)

Hello and welcome to the course on an introduction to programming through C++, this is the

second lecture sequence of the second week. The topic for today is a program design example

and the reading for this is from chapter 4 of the book.

(Refer Slide Time: 0:34)

So the main problem that we are going to consider in this lecture is how to write programs

and we have been writing some programs, we have written some simple programs and we

sort of wrote them automatically or intuitively if we will. Now, if you want to write more

complex programs, even slightly more complex programs, we need to approach this with care

because we might make mistakes and we might find it difficult to get out of mistakes and we

really should be worried about mistakes and also about how much time we spend on the

writing process.

So we should make our writing process efficient and we should also make sure that our

programs do not make any mistakes. Now, that is because the program could be doing here

very important calculations, maybe controlling the flight of a plane or maybe deciding how

much radiation to give to a patient, so you really cannot afford to make any mistakes in this.

And, so we should do sort of due diligence and it is important to learn what are the things that

you should do in order to ensure that your programs work correctly.

(Refer Slide Time: 1:59)

So the goal of the chapter is to develop a slightly more complex program, then what we are

seeing so far. And while doing this, we will follow a typical program development strategy,

so what is this? So this begins with the description of the specifications, the specification

simply and very concisely usually states what the input data is and what the output required

is. Now, if you are writing a program to solve a real-life problem, then the statement that

might be given to you, might be ambiguous or might be incomplete and so when you write

down the specification, you should try to make it as precise and as complete as possible.

Then we construct the test cases. So for what input, what output do you expect? Then we

think about how to solve the problem using pencil and paper, this is kind of the first

important seriously creative step. Now, here what you are expected is to really just mimic

manual computation, so the creativity is a little bit less important right now, but you really

need to pay attention to how you solve the problem manually, so you need to figure out what

the structure of that manual solution process is. Which means, for example, to decide whether

something is repeated, if so, how many times? And after this, you get to the program writing

stage and here the manual solution process will help you because the structure will get

reflected in the program and you also need to decide what variables to use, you can again

reason it out from the way you perform the manual calculations. Once your program is ready,

you run the test cases and if the program does not work correctly as might happen from time

to time, then you need to figure out what went wrong and you need to fix it.

(Refer Slide Time: 4:12)

The problem that we are going to look at is a very simple problem, so we have a series whose

value approaches e as n increases we have sum, so this sum is 1/0! + 1/1! + 1/2! all the way

till 1/n!, if you add the terms up, and as you take n larger and larger, you can see, you can

prove in fact that, that this sum is going to get close to e, is going to tend to e. So we are

supposed to take a program, we are supposed to write a program which takes n as input and

prints the sum of this series, whatever the value of n might be.

(Refer Slide Time: 4:49)

So first, let us come to the specification, well, the input there is only one, the integer n. So we

have clarified that n has to be non-negative integer, the problem does not make sense if we

have n negative and output is the sum 1/0!+1/1!, all the way till 1/n!. So notice that 0 as input

makes sense because then that is means that you get the first term, which is 1, that is, of

course nowhere close to e, but we did not really promise that it would get close to e for such a

small value of n in any case.

Now in this particular example, for this particular problem, the specification is fairly

straightforward. However, notice that even here we have added a bit of value, so when we

said that input is n, we also wrote down that it had better be larger than or equal to 0, in

general, when you write the specification or maybe say after you write the specification, you

should ask yourself, well, I have written this down, but are there any tricky points to it? Can

something be misunderstood? Even by mistake, because you do not really want any

misunderstanding because those misunderstandings may creep into your program as well.

So in this case, you may realise that, if you are careless you may think of n as also being the

number of terms to be added up, but that is not correct, 1/0! might be regarded as 0th term,

than 1/1! is the first term, 1/N! is the nth term, so they really are n plus 1 terms to be added

up, however, the number of additions you perform is actually n, so n does have some

significance, but not as the number of terms.

(Refer Slide Time: 6:54)

The next step is to construct the test cases, so here you just pick some input values, and you

calculate the required output values So for example, if we say n is 0, then the required is 1/0!

or 1, if we say n is 1, the required output is 1/0!+1/1!, which is equal to 2, if n is 2 than the

required output is 1/0!+1/1!+1/2!, which is 2.5 and this program really is meant for

calculating e and that happens at some large enough value.

So maybe we will see that if you pick say n equal to 10 over something like that, you would

like the answer to be close to the known value of e, which to so many decimals it is

2.718281828. Now, test cases will be really needed after you finish writing the program,

however, if you construct them early it is just the confirmation to yourself that look, I

understand what is expected of me, I have not missed out any point.

(Refer Slide Time: 8:17)

Okay, so what have we discussed so far? So we said that the first steps of the program

development process consist of the specification, writing the specification and constructing

the test cases. Next, we are going to turn to how to solve the problem manually, we will take

a break.

