An Introduction to Programming through C++
Professor Abhiram G Ranade
Department of Computer Science and Engineering
Indian Institute of Technology Bombay
Lecture No. 24: Part - 4
Data structure based programming
Composing data structures

Welcome back.

(Refer Slide Time: 0:19)

What we have discussed

* Implementation of vector and set
* Maps are implemented like set: log time needed for indexing
Next: Composing sets, vectors, maps, strings..

¢

In the previous segment we discussed implementation of the classes, vector and set. And also a
little bit about maps. In this segment, | am going to talk about how you use these classes or data
structures in programming. And in particular, in programming, you will need to compose them

together. And how do we do that.

(Refer Slide Time: 0:39)

Many applications require composing data
structures

Example 1:
* Want to keep track of friends of different people, oldest to youngest
What do we want for a single individual?
* List of friends in oldest to youngest order

sector<string> : string holds name of friend
For all people:
map<string,vector<string> > friends;
friends[“Amitabh”].push_back(“Dharmendra”);
friends[“Amitabh”].push_back(“Vinod");
cout << friends[“Amitabh”][0] << endl;
//will print Dharmendra

So, let me take an example, suppose | am writing a program in which | want to keep track of
friends of different people, and let us say for each person | want to make a list of his or her
friends in the order oldest to youngest. And then maybe | (may) | might want to do some
processing on those lists. So, what Data Structure do we use? Well, first of all, what is it that |
require this data structures for all people, lots of people. So, let me begin by asking what is it that

| want for a single individual?

So, for a single individual 1 want list of friends in oldest to youngest order. So, naturally, what |
can use is a vector of strings. So the string will hold the name of the friend and I have a vector,
so | can have, | can put lots of names in it. And I can put the name in the order oldest to
youngest. So, this is for one individual. So, if I want it for all what do I want? Well, | should
build a map, so for every person whose name is here | want this data structure. So, | should have
map.

And let me call that map the friends map. So just to clarify this let me give an example of how
we are going to use this map. So, | might say, for example, friends[Amitabh] dot and this will get
me all the friends of Amitabh, and on that I am pushing back Dharmendra. So, right, if this is the

very first statement then initially this will give me a vector which is empty and into that will be

added Dharmendra. I can do that again, so again what does this do? This gives me, this first part

give me all the friends of Amitabh. So what are the friends of Amitabh?

Well “friends’ is a map, so friends of Amitabh, gets me this element. It gets me a vector of
Strings and onto that | am pushing back another string which is what I should do so | am pushing
back Vinod. So, what does friends[Amitabh] contain right now? Well, it contains Dharmendra
followed by Vinod. I could write one more command,
friends[Dharmendra].push_back(Amitabh), for example. So then friends will contain a pair for
Amitabh and one pair for Dharmendra. And | can put friends of different people inside this

friends map.

And the second element, this map is going to take name and it is going to return a list or a vector
of friends names. And to get to that, how do | get to that? Well a vector is going to be indexed by
numbers. So, for example, if | can I can now write something like this. Friends[Amitabh][0]. So,
give me the zeroth friend of Amitabh. Select again, let us look at what it means, so friends of
Amitabh is going to give me a vector. And since this is a vector it is legal to take the zeroth

indexed element of it and what is this zeroth index element?

Well the push back happened in this order and therefore, I am going to get the zeroth index
element which is Dharmendra, so Dharmendra is going to get printed as a result of this. So, this
is one example of composing data structure. So, what have we composed? Well we have
composed map and of course there is string and we have vector. So we have made a complicated
looking data structure, but if you look at it closely it is actually not that complicated. Because

vector of strings is a list of strings or it is a list of my friends.

And then for every person, | am storing such a list. So the trick is you read it inside out. Or |
guess you can read it outside in as well. So you can say that look for every string something is
being stored over here and what it is.

(Refer Slide Time: 5:10)

Composing data structures

Example 2;

+ Want to keep track of friends

+ Want to determine if A and B are friends
map<string,set<string> > friends,
friends["Amitabh"].insert("Dharmendra");
friends["Amitabh"].insert("Vinod");

cout << friends["Amitabh"].count("Jeetendra");
* will print 0 because not friend.

* Not easy with vectors

* Vectors can tell you who is the oldest friend, if you insert in order.

Let me take another example, so again this is about keeping track of friends. But, now | want to
determine if A and B are friends. So, | want to determine if Dharmendra and Amitabh are friends
or Jeetendra and Dharmendra are friends and things like that. So, | want to have a data structure
which can quickly answer queries like this. So, what should I use? Well let me give you the

answer. So, here it turns out that is useful to use this a map from string to a set of strings.

So, again | am going to call it friends. So, let me read this, so the first thing is going to be the
name of the person whose friends | am thinking of. And then this set is going to contain the set
of all the friends. So, how do I use this? So, earlier | pushed back Dharmendra, now | am going
to insert. Why insert? Because friends[Amitabh] gets me a set of strings not a vector strings. And

into to a set you insert you do not push back.

So, again | am going to insert VVinod as before and now | can query. So, here is how | am going
to query. So, | am going to ask give me friends of Amitabh and what does it give me? It gives me
a set of friends. And inside that count how many times Jeetendra appears. So, if it appears, if this
appears once, then that means yes Jeetendra is a friend. If this appears, if this returns a zero then

it means Jeetendra is not a friend.

So, what is going to happen now? Well into the set we inserted Dharmendra and we inserted
Vinod and therefore, Jeetendra is not there and therefore, this is going to printout a zero because
we have not made Jitendra a friend. But if you insert even now,
friends[Amitabh].insert(“Jeetendra”) and then call this again, then you will see that the count has
become one. And by the way these are sets. So, if you reinsert it is not going to change anything.
The sets as you know from your study of mathematics, a set cannot contain the same element

more than once.

So, C++ actually does have something called a multiset, which does contain, which allows you
to store several copies of the same element into the set. So as | said, look at the online
documentation if you feel you need to learn what a multiset is. But we are not going to look at
this interesting class in this course because already we are doing a lot. Now, | just want to point
out that this kind of a query to quickly decide whether Jeetendra is a friend of Amitabh would

not be easy with vectors. You have to write a little bit more code.

So what code would we write? So we would say look at that vector, compare Jeetendra to every
element in that vector. That kind of code we would have to write. But here since it is a set and on
the set we have this count operation, we can get the answer in exactly in in just very small
amount of code over here. What is the important point that is coming out of this example, the
data we are storing is really the same. We are storing information about who is the friend of who,

but depending upon what data structure we use certain kinds of queries are easier to answer.

So, here what is easy to answer? Whether or not two people are friends is easy to answer. What
is not easy to answer? Well this data structure you cannot tell who is an, who is the oldest friend.
On the other hand if you had vectors and if you insert friends in order of how long you have
known them, then you could quickly tell who is the oldest friend. Just look at the zeroth friend in
that vector. So again this is a very important point, you should know how to compose data
structures. But just because you are storing the same information, it does not mean that exactly
one kind of data structure is the right data structure. It really depends upon what you want to do

with that information.

(Refer Slide Time: 10:08)

Composing data structures

Example 3:
+ Want to represent bus fares between cities

* Want to know fare between city A and city B (assuming there is a bus
connection)

What do we need to know for each city?
“What cities can be reached directly, and the respective fares.”

For all cities:

Map from city to (e city to fare payable)
map<string,map<string,d > > fare;
fare[“Mumbai”] [“Pune”] = 500; // Mum-Pun fare is 500.

| want to do one more example, so let us say we want to create a fare table. We want to represent
bus fares between cities. So once we have the table, we could ask questions like, what is the fare
between city A and city B. Assuming of course is stored it in our table in the first place. So if
there is a bus, bus connection from city A to city B, and somebody gives us a query, tell me the
fare from A to B, we should be able to look at our table and answer this very quickly. How do

we do this? Well, let us sort of try to build it bottom up or inside out sort to say.

So, let us ask what do we need to remember for each city, what do we need to remember? Well
we need to remember what cities can be reached directly from that city and what fares are there
for each of those journeys. So this is what we want to remember for the first city, second city,
third city whatever it is. For Mumbai, Pune, Nagpur, Kolhapur whatever cities you are talking

about we need to you remember this information.

Well what is this information? So, for every city that can be reached, we want to keep track of
the respective fare. So this is really just a map from city to fare payable. So, what kind of map is
it going to be? So again let us say the reachable city is represented by strings. So, it is going to be
a map from strings to fare, fare could be double. So, it could be a map from strings to double. So
this is just for one city. And what else do we, what do we really want? We want this for all cities.

So if you want it for all cities, what should we do?

Well we want this is going to be inside something and what is that outer thing? Well we want to
map from a city to a map. So, for Mumbai | want a map of all cities reachable and what fares are
payable. So it is a map from a city name to such a map. So here is what it is going to look like.
So map from a string to a map from a string to a double. So, this is really this part and this map,
the city over here is this part. So, | have to supply a city, | have to supply another city and out

will come the double or I can store into this.

So, for example, once | declare this | can write a statement like this. So fare from Mumbai to
Pune is 500 rupees. That is what this statement is saying. But you should really understand what
this is doing. So this is saying there is a variable or there is data structure called fare. What is
that? It is a map. So, | can give you and index which is not here to be a number, it could be a it as
it is a string as it is mentioned over here. So, if | give you Mumbai what do | get? | get a map and
what is that map? That map is going to tell me, what is the price to go from Mumbai to various
cities? So, for every city that is reachable from Mumbai | am going to get the name of the city
and the fare. But once | have that map, if | supply where | want to go, | can store into it the fare

or if I say print this out, I will get the fare get printed.

(Refer Slide Time: 14:04)

What we discussed

+ Sometimes we need to compose data structures.
* Exact choice of data structures:
— Depends upon what operations we need to perform.

* How to choose: look at a small part of the entire picture
— What do we need for one individual?
- What do we need for a single city?

* Bulid up from that.
Next: typedef

Alright, so what did we discuss? So, we discussed that sometimes we need to compose data

structures. The exact choice of data structures depends on what information we want to store.

But also on what operations we need to perform on that information. And then we also said
something about how do you do this composition. So we said that the way we do this

composition is look at a small part of the entire picture and build it up from there.

So, what do we need to for one individual? What do we need to do for a single city? Therefore,
what do we need to do for all individuals or the all cities together? So, next I am going to talk
about something called typedef and then I am going to conclude this lecture sequence. But before

that let me take a quick break.

