
An Introduction to programming Through C++

Professor Abhiram G. Ranade

Department of Computer Science and Engineering

Indian Institute of Technology, Bombay

Lecture No. 24 Part- 3

Data structure based programming

Implementation of standard library data structures

Welcome back.

(Refer Slide Time: 0:22)

In the previous segment we discussed the Standard Library Class Set and Pair and also

briefly talked about unordered sets. In this segment, we are going to discuss a little bit

about how data structures are implemented. So, all these things sound like magic, but, of

course, there is some code which is running behind them so I, want to tell you about that

code.

(Refer Slide Time: 0:44)

So, in the first class that I am going to discuss is the Vector Class. Now, the Vector class

is implemented in a manner similar to the String Class I, should I guess capitalize this

because by the String that I have, that I mean over here, I mean the string that we

discussed in our lecture, not the Standard Library Class String.

If you remember, so we discussed a data structure or a class for storing character strings

and we ended up writing things like constructors, assignment operators, copy constructor,

destructor and also concatenation operators. So, the Vector Class has been implemented

by someone in a similar manner. So, what is the difficulty, what is what is sort of the key

difficulty in implementing a Vector Class, what is the key question we need to answer?

Well, if we are doing a push back operation and if the current array that has been

allocated to hold the elements of the vector gets exhausted, what I mean by that is,

currently you have 100 elements allocated and you push back one more element, so now

you have 101 elements which are stored in your vector. What do you do? Well clearly if

you remember what we did in the string case, what you will have to do is you will have to

allocate a new Array. Then you copy the content of this array into that new array and then

you delete the current array.

(Refer Slide Time: 2:27)

So, if I may draw a picture, this is your current array or array, this is the array pointer and

this is pointing to this array. So if I do a push back I really want to store that element

somewhere over here. But this area is not given to me, so what do I do, I ask for a bigger

array, I may just ask for an additional element and I may just ask for just a little bit more,

but it turns out it is good to ask for a much larger array.

So then I copy this part to this part, so I get whatever I had earlier into this array, and then

I insert whatever I want to push back I store that element that I want to push back into

this element over here. And then I set my array pointer to point to this new array and I

delete this array. I give this array back to my storage allocator because I do not need it

any longer. So, this is something I want to do, so that is sort of natural thing and that is, in

fact, exactly what happens.

(Refer Slide Time: 3:52)

But there is an interesting question that I have not answered which is how big an array do

I allocate.

(Refer Slide Time: 4:01)

Now, turns out that it is a good idea to double the size. So, why is that, if I double the

size. then subsequently if you do more push backs, you will not immediately have to

allocate and copy and things like that. So you will be saving on your copying cost and

additional allocation cost.

You will be wasting a little bit about little bit of memory but how much memory are you

wasting. Well you are wasting exactly as much memory potentially as you have elements,

so you are wasting a little bit of memory, but the time you save because of not having to

copy too frequently is a lot more important.

(Refer Slide Time: 4:47)

And it turns out that it is possible to prove in fact, that if you sort of do this doubling idea

then the copying time is not too large. In fact, you can then think of vectors as being as

efficient as arrays. So, when you have an array, you do not have to do any copying, right.

The memory is given to you once and for all. Here, you do have to do some copying once

in a while you have to do allocate ask for new memory.

But what this is saying is that if you have this doubling strategy then you can ignore those

costs. Let me acknowledge that I (have) I have not explained exactly why this happens. It

can be explained as I said you can actually prove rigorously what I am saying but that is

not a part of this course. You may see it in some other courses say a course on data

structures. But it is worth knowing that vectors really are practically as efficient as arrays.

(Refer Slide Time: 6:07)

Let me next, say a few words about implementation of ordered sets. First of all, let me

acknowledge that this implementation is very tricky. We have not even begun to think

about how ordered sets can be implemented in this course. The Ideas are quite-quite

clever and we have not seen them. Having said that, let me just give you a hint. What

happens when you store an ordered set?

Well, of course, there is some memory allocation that happens but at the end you get the

effect that all your set elements are effectively stored in some sorted order. So they are

not actually, they are not actually in sorted order, but for practical purposes they are in

sorted order. Again this is intriguing and I am sorry to intrigue you but well may be this

is this should be an inspiration for you to take the data structures course. Anyway, what

happens is that effectively the elements get stored in a sorted order.

And why is sorted order important, well that you know the answer to. So if I want to

decide whether an element is present, what can I do? Well I can do binary search so this

binary search like idea also works and we have discussed binary search long ago and we

have seen that binary search is actually very fast, you do not have to look at all the

elements of the sets.

You only look at log of the size of the set that many elements. So the time proportion, the

time required to determine the current element is present is proportional to the log of the

number of elements. So this happens very fast and that is another reason for you to be

using a set, the set class. Because it is actually a very it actually has very fast operations.

And let me just mention over here, that maps which you studied, which we studied in the

last lecture are also implemented in the similar manner. So, again, if I want to store

something into a map, if I write A of something equal to something, then that happens in

time proportional to log or if I want to get the value stored in the map again that happens

in time proportional to the log of the number of pairs stored in the map.

Now, again one very-very cryptic remark I should make and that is that unordered sets

and unordered maps are even cleverer and they actually work even faster. I am not going

to say anything about it, you will need to take course on data structures if you want to

understand why unordered sets and unordered maps are faster and what is the clever idea

behind them.

(Refer Slide Time: 9:15)

I want to make one more comment again this relates to the efficiency of these classes or

data structures. So, basically a point that I want to make, is that if I am defining a class

involving strings, it is usually going to be more complex or more time consuming than a

class involving ints. So, why is this, well if I want to compare, if I want to do any

operation on ints, our computers are very capable of operating on ints or in general on

numbers. So, all these operations take one-two cycles on most computers. So they

involve one two machine level instructions if you remember them. On the other hand, if I

am comparing two strings say they are of size ‘n’ then potentially I will have to compare

all characters, all the elements of the string and could take as large as ‘n’ operations. So,

that is the basic issue that if I have things which are built up using strings, then strings are

long obviously. And therefore, the time taken to do something with strings is usually

longer than the time taken to do something with integers. So, in other words what I am

saying is that if you are counting, if you are looking at the time for operations on sets or

maps or vectors of stings, that is usually going to be bigger than the time for operations

on sets or maps or vectors of ints and therefore, it raises the question can we minimize the

operations on strings.

So, if you are writing production quality programs, this will be an important question you

will want to minimize the operations that you perform on strings. This is a point that I

want to raise right now just to alert you to it, but in this course, in this course we are not

going to worry about this point. So, in this course we are going to ignore this issue but

this is just a point that I want to want you to keep at the back of your mind and again you

can think about it when you do the data structures course you will see why this is the

case.

(Refer Slide Time: 11:41)

Alright, so what did we discuss in this segment? Well, we discussed implementation of

vector and set and we said that maps are implemented like sets and the beauty of maps is

that for insertions as well as for search, for determining whether something is present in

the map, logarithmic time is needed. Next I am going to talk a little bit about how to

compose these data structures together. So, how do you build sets of vectors? When do

you build sets of vectors or vectors of maps or maps of strings and so on? But again,

before that let us take a quick break.

