
An Introduction to Programming through C++

Professor Abhiram G. Ranade

Department of Computer Science and Engineering

Indian Institute of Technology Bombay

Lecture-23 Part-03

The Standard Library

Classes map and unordered map

(Refer Slide Time: 0:18)

Welcome back. In the previous segment, we discussed sorting.

(Refer Slide Time: 0:26)

In this segment, I am going to talk about maps and unordered maps, so these are also template

classes and will see details. So, let me describe them starting with vectors. So, a vector or an

array, gives us an element when we supply an index. The index must be an integer and it must

come from a small range. But sometimes we may want to use indices which are not integers, but

maybe strings. So, for example: Given the name of the country, we might want to use the name

of the country as an index and we would like back its population, or maybe we want back its

capital.

Now, this is exactly what maps or unordered maps can do and these can be obtained by using

header files map and unordered map. Unordered maps are faster but have some poor features. So

we are going to talk about one feature that they have less, but they have some other features also.

But if you do not need those features you should really use unordered map because they are

faster and the reason for these names will become clear soon.

Well, the reason for the name map should be clear because the map is really in this example

mapping the name of a country to the population or it is mapping the name of the country to a

capital, so it is like a mathematical map. A mathematical maps elements of one set to elements of

another set, so that is what this is doing. Unordered map will become clear a little bit later.

(Refer Slide Time: 2:19)

So, let us talk about maps, so what is the general form and take some examples. So, if I want to

define a map, here is what I write, I write the keyword map, then I write in braces the two

template arguments, the index type and the value type and then I give the map name. So, as an

example, I can write map<string,double> population. This is going to be useful for doing the

thing that we just say given a country, let us get its population. So, here the indices will have

type string, so, for example, I can have country names and elements will have type double so that

could be population if I want. And if it is going to be a map there is a technical requirement that

this index type must satisfy. So, well I might as well mention it later that the index type must be

comparable using the less-than operator and how that actually comes in, we will discuss later.

But how do we use this, how do we use a map.

(Refer Slide Time: 3:30)

So we have a map from strings to doubles and we our map is called population. So, here is what I

can do, I can say population index India is 1.37. So, this actually creates an entry in the map, it

looks like an array access statement. But it is a lot more interesting, it is creating an entry and

then the index does not have to be an integer in a small range. But it can be anything, well it can

be string as we have specified over here and it is storing 1.37 in that element of the population.

So, map entry or map element has been created now. I can create more and more, and I can print

out what is stored in the map. So, if I write cout<<population[“China”], this will print out 1.42. I

can update the entries as well. So suppose, I just realized that this was an old entry and the new

population is slightly larger, then I can put this new population. 1.37 will go away and it will be

replaced by 1.38.

(Refer Slide Time: 4:58)

Now, you would like to know whether our map contains say a certain country. So, I would like

to check if a certain index is defined. So, say we are doing lookup, a population lookup service,

so somebody types the country and now, I want to know whether I have the population with me.

So for that, I am going to write population.count, so count is a member function on population on

those specific maps it takes a country as an argument and it says look is there an element with

this country as the index whatever you type done.

So, for example, if we had placed the population of India, China and US and suppose you typed

in Sri Lanka then this population count what turn out to be 0. Otherwise, it will be 1. And by the

way, there is a multi-map as well, which allows you to put several entries and that is why this

can be a general number, but with maps, it has to be either 0 or 1. So, if this entry has been

defined then we can say print out the population and if this entry is not defined, we can say the

population is not known. So, this is a very short population lookup service that you can put up.

(Refer Slide Time: 6:13)

So, as you might expect a lot is going on behind the scenes and there is actually a very

interesting idea and that idea is discussed in chapter 24. It is a bit of an advanced idea, so we are

not going to consider it in this chapter. If you wish to say, that look I have stored a lot of data in

the map and I want to print it out. I want to print out all the countries and their population that I

know. So you can do that and that will need to use of iterators which we are going to discuss

next. The discussion so far also applies to unordered map, so everything that I had said over here

just replace map by unordered map and it will work.

(Refer Slide Time: 7:02)

Alright, so what have we discussed? We said that maps are like arrays, but the index need not be

an integer in a limited range. A map M and this applies to an unordered map as well can be

thought of as a pair, so you are storing these pairs, the index and the value pairs. And the way to

add a pair is this, so you say M[index]=value. This adds, this pair into the map.

And you can check if a pair is present by writing M.count we saw this and whether checking

with it is greater than 0 or not and you can get the value by writing M[index]. Unordered maps

have similar functionality. And this is the end of this segment. In the next segment, I am going to

talk about iterators and we will conclude this entire lecture sequence.

Thank You!

