
Design and Pedagogy of The Introductory Programming Course
Prof. Abhiram G. Ranade 

Department of Computer Science and Engineering 
Indian Institute of Technology – Bombay

Lecture – 06
Basic Ideas in Our Approach. 1: Examples of translating manual algorithms to computer

programs

Hello,  welcome  back.  In  this  lecture  we  are  going  to  see  examples  of  translating  manual

algorithms to computer programs. So our first example is computing the value of e the base of a

natural algorithm.

(Refer Slide Time: 00:38)

So the problem statement is write a program to compute e which is given by this infinite series 1

+ 1/1! + 1/2! + 1/3! and so on and we want to add this series only to the first n terms. So we want

to write a program to do this. Can our students do this manually? Of course they can. Now does

it mean that they can write a program? Well they will have many questions if you ask them to

write a program. For example, we need a loop. How many iterations will it run? What variable

should he be choosing? How to update the variables in each iteration?

Now you and I may think that these questions are really simple, but they are actually not. I have

talked to students and I have asked them I talk to you about this, I have written this in a book that

I have written that I have written that is the book that has been mentioned along with this course.



Do you really like me to explain this? Do you really want me to explain this or do you think it is

obvious? I was quite surprised that bright students as well as not so bright students came back

and told me please, please sir keep this description.

We need  this  description.  We find  it  very  useful.  It  is  very  comforting  for  us.  It  gives  us

confidence in writing programs. So please put yourself,  please imagine yourself  as a novice

student in the first programming course and approach the next slides from that point of view. So

we want to compute the value of e.

(Refer Slide Time: 02:41)

What is  our suggested strategy? What  do we tell  our students? Well,  we will  tell  them first

observe  what  you do manually. So  for  this  they  can  say  something  right  well.  The  manual

computation does have n - 1 phases. In the ith phase, you calculate the value of 1/i! and you add

it to the previous values; the previously calculated sum. Well what is it that you exactly calculate

and how do you calculate it.

Well you want the value of 1/1!, but you know that in the i - 1 phase or in the previous phase,

you already had calculated the value of 1/i - 1 !. To get the value of 1/i! You just have to divide

by i.  Do students observe this? Of course they will. Ask them to actually do the calculation.

There we are going to do i! from scratch. They will immediately realize that oh I just calculate

1/5 ! to get 1/6 ! I just need to divide again by 6.



So they will make this observation and we want to alert them to make this observation. In fact if

you ask students to write a program they will forget how they do this whole thing manually and

they will compute whenever i ! from scratch every time in the loop and they will get confused,

because there will be a nested loop and so on. And of course they will do extra computation. So

although computational complexity is not a part cannot be a part of the first programming course

this is an obvious economization.

And we should alert students and in fact the AICTE course and many other courses do say things

like encourage students to minimize computation. So alert students to what they exactly do and

this is what they really do. If you go along this path you will talk lot about the values and you

may realize at this time that it is better to give names to values. So for example you could say

that ti is the term calculated in the ith iteration.

Si is the sum calculated in the ith iteration. Remember that these are students who have already

done in the 11th and 12th standards. So they are familiar  with series. They do know giving

names to  terms of a series.  So this  is  not going to  be something that  they are going to get

confused about, but once they give these names, they can write their observations in a succinct

manner. Instead of saying value calculated in the ith phase is value in i - 1 phase/I, we can just

say ti which we want to calculate is ti -1/i.

So it becomes much more precise. It becomes much more compact and of course, do this slowly.

So if somebody gets confused by writing ti tell them that this is what you mean and tell them

why they are writing ti. We are writing ti because it is convenient for us and similarly is. So what

we are doing in the ith step is doing the division and doing that addition. Next we want to write

the program and we should write the program only after we have understood.

What  it  is  that  we are  doing  and  preferably  understood  it  in  these  very  specific  terms  not

generally  that I do this, this,  this,  this in the next step this  is  what happens not in terms of

examples, not that in the first step I am going to calculate 1/1! in the second step I am going to



calculate 1/2 !, 1/3 !; no. Students can rattle that off, but tell them that you need to do a little bit

more. You need to tell me what happens in general.

So this idea that students have to say what happens in general is important and therefore they

need to give names and they need to write statements such as ti = ti - 1/i and they can say that

this is what happens for all values of i. Once they have said this, only then are they ready to write

the program. So now you can say something like if you have n - 1 phases if you are repeating the

same computation n - 1 times, then that means you should have a loop that runs n - 1 times.

And in the loop you need to have variables. So it is natural to use variables s and t to store values

si and ti. So you really need to go over this fairly slowly. You need to tell the students how you

are going to update those si and ti, the order is important at the beginning si and ti will satisfy

that ti = ti - 1/i and si = si - 1 + ti and when you make the changes this will of course not be

satisfied, but you have to make the changes in such a manner that at the end s will again contain

the desire si value.

And t will again contain the desired ti value at the beginning of a phase t should contain the

value ti as written above. s should contain the value si as written above. And to make sure that

this happens in the i + 1 phase we need to change the variables s and t in a certain manner. And

the teacher should show by examples and with a little bit of patience exactly how those changes

had to be made. 

In other words, we can almost derive the entire program or deduce what variables are needed,

what kind of statements we need to write  inside the loop. In fact,  even things like how the

variables need to be initialized.

(Refer Slide Time: 10:03)



So  some  remarks  when  writing  a  program  we  should  encourage  students  to  write  precise

comments and a very useful comment could be at the beginning of the ith iteration s and t will

hold si = 1 + 1/1 ! + 1/2 ! all the way till 1/ i! or whatever it is that you want s to be and ti should

be 1/ i! or again whatever it is that you want ti to be. Whatever value we want ti to be should be

there in ti that is what your plan is and that is what you should state.

Notice  that  what  you are  encouraging the students  to  do are  simply to  write  invariants  and

invariants  are  an important  idea as you know. They are important  in  making sure that  your

program is correct and many times students also assume that once they write the program the

teacher is going to correct it and the teacher is going to tell them whether the program is correct

or not; No that is not at all how it works you have to tell your students.

You have to tell your students that they are supposed to argue that their program is correct. So

not that correct unless proven otherwise, but they are supposed to argue that their program is

correct and in the first programming course they do not actually need to give a prove, but they

actually need to say what is that they are expecting their program to do. So even if they are

saying what s and t will hold that is a good solid step that is all that we expect, but we certainly

expect that in the first programming course.



You can also tell them that if you write down these comments if you write down what you are

planning are going to be contents of your variables that if you make a mistake you will know

immediately what the problem is. You can test at the end of each iteration; Are my variables

having the values that I expect? Some students as I said will calculate i ! from scratch and each

iteration, but as you have said this is not quite how they would solve the problem annually.

And then some says see that this is a proof of the fact that students are not paying attention to

manual computation and we are saying that manual computation is very important and of course

as we said earlier calculating i ! from scratches less sufficient the program will have nested loops

and it will be slightly more complicated and therefore in the spirit in which we are taking this

example.

And in the spirit of efficiency it is useful if we encourage students to do it in this manner and

write  down the invariance  or the plan for the program that  they are going to  write.  This  is

discussed in great detail in chapter 4 of the book that has been mentioned with this course; An

introduction to programming through c + + which you can see in the site or in the description.

(Refer Slide Time: 13:57)

My second example is array packing. What is the problem over here? We are given an array of

integers. We are required to move all the 0s in the array to the end. The non zeroes are to be

moved to the beginning and in doing so we are supposed to maintain the relative order. A more



realistic problem could have been that I am typing some text and in typing the text instead of

putting only 1 space between consecutive words I am putting several.

And you want to remove those extra spaces. So this is sort of a simplified version of this problem

and for ease discussion we are going to take the simple version. Now how do students do this in

absence of any instruction? So here is that what they will do. They will check if a of i = 0 if the

array contains a 0 in a certain position. If there is a 0 then you know or you have been told that

the 0 should be moved forward. So they swap.

So ai + 1 is brought forward and 0 is going to be moved to a i + 1th position. Now if you think

about this carefully you will see that this step will have to be repeated n square times. Students

do not always get that right and of course it is inefficient. You should be able to get and know

algorithm for this but more importantly there is potential for making errors here. If there are

consecutive 0s then if you are sloppy in your reasoning you may skip some 0s.

You may not move every 0 to the end. So this highlights 2 things you should not be sloppy and

you should have a clear idea of what you are accomplishing as a result of each step and as you

will see in a minute if you just think about how you solve the problem manually you will do this

in  a  much easier  manner. So  what  is  our  strategy?  What  strategy have  we suggested?  Our

strategy is mimic manual computation. So the problem was stated as what do you with an array?

So now for manual computation we have to back translate it to a black board because we can

manipulate a black board manually we can write or erase on the black board so a black board is

much easier to deal with for manual computation. So what would you do if the array is given on

a blackboard?

(Refer Slide Time: 16:56)



Many students will say I will go through the array on the board and write down a list of nonzero

elements as I have encountered them. Notice that they are not going to say you are going to do

local exchanges. They will realize that local exchanges are a lot messy why should I locally

exchange. The moment they do a few local exchanges they will realize that I could have moved

this to the end in 1 shot and how do I move that to the end in 1 shot?

What am I really doing there? So what we are telling the students is think about what are you

really doing there really doing in all of this. Now the second step. What does it mean to go

through the array? Well, when you want to translate it back to an array or go through the array on

the black board, now go back to the computer how do you go through an array on a computer.

Well for that you need to use an index variable;

You need to increment that variable and look at the entry which that index is pointing to. Then

there is this step. We are going to make a list. How do you make a list? How do you make a list

on a computer? On a black board making the list is easy. I just start writing on a different piece

of the board. What do you do on a computer well as teachers we have to tell the students that you

can also make a list on a computer? How do you do that? You use a new array.

You ask for a new array. You have another index for it and you insert element into an array. So

you insert it at the current index value and increment the array and so on. So now you have



copied the list of nonzero elements into a list. What do you do next? Now you can erase the old

array on the blackboard and just copy this new list so now all the zeros are not there, but you

wanted the zeros as well so the rest of the array you append with zeros.

So this is reasonable blackboard algorithm and what you should do is you should work with the

student in discovering the black board algorithm and tell the student what has to happen for

translating the black board algorithm to a computer algorithm. What does go through array mean,

what does making the list mean? Now the solution is actually very good; going through the array

and copying the array does state O of n times.

So we have already made an improvement, but another improvement is possible. So there is a

more direct solution in which we do not really need a separate list. So if you brought the students

again you really need extra broad space for the list. Many students see that overwriting directly

can work. You don’t need an extra array. You can write at the beginning of the array because you

are reading through a pointer which is further down.

So you do not really need to worry about those 2 lists overwriting one another. So the extra

solution is important and student should get to it and they will;  but on the other hand some

students do not get to the extra solutions; that is okay. They already have a good solution. They

already  are  learning  that  they  should  be  introspective.  And  if  they  learn  to  make  a

correspondence between the manual algorithm and what they are writing on a computer.

And if they say that look what I write on a computer is correct because when manual algorithm is

correct that that is there you have taught them what they need to learn.

(Refer Slide Time: 21:10)



Third example, we are given a picture and we want to count the number of objects in it. So here

is an example. So we are given a 2D array containing a binary image. What is a binary image?

Well it contains 0s and 1s and an object is a maximal set of adjacent 1s. So in this picture, for

example there are there is this region of 1s, this region of 1s, these regions of 1s is a contiguous

region and that constitutes 1 object.

Similarly, there are other objects and those objects are what you are expecting to count. So there

are 3 objects as you can see and we want to write a program which counts these 3 objects. Now

let  me mention  that  this  is  difficult  problem.  I  did discuss  this  problem in  the  introductory

programming course and I am reporting this to you because I got some really nice answers and

those  nice  answers  were  obtained  because  I  ask  the  students  to  think  what  would  you  do

manually? So the answer will show that solving manually is a powerful idea.

(Refer Slide Time: 22:45)



And also it shows you that it is not that immediate. Students don't get to that idea immediately,

but  when they get  to  the  idea  it  is  some kind of  a  revelation.  So how does  the  discussion

proceed? So I said okay. I told the student look what would you do manually. So the student says

well I see 3 objects. Now you should ask at this point and tell me and tell the student well think

to yourself and tell me how you realize that there are 3 objects.

At this point the student almost gets angry. The students have looked I see 3 objects. I do not

know how I see 3 objects, but isn't it obvious. There are 3 objects. Do not you see 3 objects?

What is there to tell? There is nothing like how do I realize it. I just see them. Now this is an

important question. This is an important point because we have found a gap between human and

computer  perception.  It  seems  that  the  student  or  human  sort  of  look  at  the  picture  and

immediately see what is it.

Whereas, the computer does not work that way. A computer has to look at 1 pixel at a time. One

of those 0s are 1s at a time. So what we need is a strategy by which we can bridge this gap

between humans and computer perception or check whether there actually is that gap. So what

you should tell is that imagine that the board is so huge and you are standing so close that you

can see a little at a glance. You can only see a little.



Then you would not surely see those 3 objects right away. What would you do then? So may be

at this point the student will say so then I will go to the top of the board and I will sort of

carefully walk around and make sure that I have seen the entire board and that way I might note

3 objects. Here is another thing that you can tell. You can say that look you are not allowed to

look at the board entirely, but you are only allowed to look at the board through a small movable

window.

If this is the condition, we will still  be able to tell me how many objects there are. Now the

students will have to think. The student will have to think about how that window is going to be

moved. And now we have come to grips with the problem the way a computer needs to saw or

even the way a student needs to solve it. Because and this is again something that you should

remind the student what if the objects were long and complicated and a snaked around each

other?

When you would not know that there are 3 objects? So you would have to do something else. So

now the students really get to think and this is the crucial point. So 1 student might say, so I

would colour objects so the moment I see that there is an object through my window I will colour

it and I will colour every sort of spread the colour to its nearby cells, nearby excels and that way

I know that this is an object that I have already coloured. 

Another student might say that I would trace the outline of the object and I would count the

number of outlines. When I trace the outline, maybe I will colour the outline to make sure that I

am not going to trace it again.

(Refer Slide Time: 26:35)



So these are great ideas of course there still need some work. What does it mean to colour each

object with a different colour? What is the computer equivalent of colouring? So basically we

have that array and the array contains pixel values which are 0s and 1. Now we are going to let

those values become > 1.

So we are going to allow the program to write into that array or maybe we will make a copy of

that array and write into it, but whatever it is that we will help to write into that array. How do

you spread the colour? Well something like this if the ijth entry is 1 and the next entry is > 1, > 1

means we have coloured that entry. So then we will make that ijth entry equal to the next entries.

(Refer Slide Time: 27:28)



So to take a snap shot, these are my pixels. If this entry, I have made 3 and this entry is 1 then I

know that this pixel is a part of this object. So I am going to change this pixel entry 2 or 3 saying

that this is also a part of the third object. So in this way I am going to spread this 3 around. Now

in the objects, branch off in many directions how do you ensure that the colour reaches all parts.

This is actually a fairly nontrivial question. One answer is go over the picture several times.

You can make this work. It is not the most efficient. The efficient solution is a little tricky, but the

non most efficient solution can be made to work if the student is patient. Just go over the array

several  times.  The second idea was trace the outlines.  How do you identify the cells  on the

boundary is easy so ij is a boundary? If (i - 1)j or ij - 1 and so on are 0 and ij is 1, but how do you

identify the pixels which constitute a single boundary; that is a little hard.

So students will have to say so if I am looking in the north direction and the boundary is in the

north direction I will need to go north east and check and then maybe I will go after north east I

will check south and so on. So you will have to work that out a little bit, but the point is that the

students are already coming up with nice ideas and they are doing so because they are thinking

what do I do manually?

More complications if the objects have holes and then there are internal boundaries. So how do

you deal with internal boundaries? So these are problems again all of these problems may not be

solvable in the first year, but some variation of this problem can be given. I had given a variation

of this problem in my first year course, a simplification of this problem and students were able to

solve it.

(Refer Slide Time: 29:34)



So some remarks. The example shows the important part about human perception. Humans don't

really see everything at a glance. It appears to be so only if the picture is simple or small. Our

eye  has  its  own intelligence  and subconsciously  the  gaze  moves  over  the  image  often  very

rapidly. So this also contributes to the at a glance illusion. Then we have said that variables are

needed to hold data, but here we are not only using variables to hold data, but we are using

variables to note what we are looking at currently.

So variables i, j keep track of which pixel we are examining currently. So we are examining a

(i,j). So pixel of ij that element of the array we are examining and ij are variables which are

keeping track of what it is that we are examining and this is needed for 1 dimensional arrays as

well.

(Refer Slide Time: 30:45)



Alright so I am going to stop this lecture right now. We will take a break and we will come back

and after that we will continue with the fourth example. Thank you.


