
Design and Pedagogy of The Introductory Programming Course
Prof. Abhiram G. Ranade

Department of Computer Science and Engineering
Indian Institute of Technology – Bombay

Lecture – 05
Basic Ideas in Our Approach. 0: Introduction

Hello and welcome again to the course on design and pedagogy of the introductory programming

course. In this second set of lectures I will talk about the basic ideas in doing this design and the

pedagogy. So a quick recap from last time.

(Refer Slide Time: 00:35)

So we said that in programming courses worldwide there is fairly high failure rate and because

programming happens to be a fundamental course for computer science and also a very

important course for other branches we should take this failure rate very seriously. We said that

students have some difficulty in understanding the machine model and more important perhaps is

the difficulty that students are unable to solve.

Or, unable to write programs to solve relatively simple problems. Teachers expect that students

will do a lot better than how they are doing right now and there is some puzzled as to why

students don't do that. So in other words there is a feeling of frustration but there is also a feeling

of mystery what is going on here.

(Refer Slide Time: 01:36)

So here is what I am going to do today. I am going to try and resolve this mystery and for doing

that we will work towards understanding our students better. And we will present hypothesis

about why students find programming hard. Then we will indicate some pedagogical strategies,

which are addressed towards the difficulty outline in the hypothesis. Specifically, we will

encourage students to become aware of how they solve problems manually and we will teach

students how to translate from manual computation to programs.

We will give a number of examples of this and then we will consider the question which we were

talking about a little bit last time as well. Which is; should we teach problem solving strategies?

So is it the case that students do not understand how to write programs because they do not

understand problem solving. So we will dwell on this question a little bit. Then we will talk

about the design.

So after a few preliminaries I will talk about the contents that we want to teach or the topics or

the outcomes that we desire. Then we will make some remarks about individual topics.

(Refer Slide Time: 03:01)

So let us begin in earnest. Who are our students? Well our students when they come to us have

already done a lot of math and science in standards 1 through 12. They are curious about how

things work and they would like to build things. They are 18 years old or so and they have a

decent knowledge of life. What do they know really about programming when they come to us?

As it turns out if you think about it the knowledge of mathematics that they have gained in these

18 years of life or whatever 12 years of school life is really mostly a series of algorithms.

It is not that they are starting with a blank slate. They really know algorithms. They also have

decent problem solving skills by that I mean they have some information about math and physics

and they are able to apply that information to solve day to day life problems. So they understand

programming, but they do not understand programming, but they understand algorithms and they

understand how to apply knowledge to problems they might be seeing for the first time.

(Refer Slide Time: 04:25)

So let us understand this question a little bit better. What do our students really know about

programming? So I claim that our students already have learnt fairly sophisticated algorithms for

solving many problems, but not on a computer, but solving them manually. In primary school

they have learned how to do integer arithmetic, multiply 2 numbers, divide 2 numbers, how to

factor a number, how to find the GCD of numbers.

This knowledge is acquired and understood by them in terms of algorithms. They know how to

find the GCD. They know how to multiply. So that is basically a bunch of algorithms and if you

think about these algorithms are fairly sophisticated they contain reputation, they contain

conditional testing and some of them might also be thought of as recursive algorithm. Then they

know arithmetic on matrices, polynomials. They have learnt a little bit of calculus.

They know how to integrate or differentiate and these are again algorithms. They know a lot of

geometric constructions. So, given a line segment how do I find its midpoint? What is that? That

really is an algorithm. It is an algorithm that uses compass and rulers, but nevertheless it has very

specific steps, which had to be followed in specific order and that is an algorithm. They may be

solving physics problems, for example if there is an inclined plane and there is a block sliding

down.

What do you do so they know precisely what is to be done and again that knowledge many

people understand as an algorithm balancing chemical equation is again an algorithm may be set

up simultaneous equations may be multiply both sides and so on. So in fact often the chemistry

teacher will give you a sequence of steps. Tax calculations, elementary commerce they

understand these things and again they know how to problems in it. Now, the puzzling

observation.

The programming exercises that we ask in introductory programming are typically much simpler

than many of these problems. Our students can execute much more complex algorithms, but they

cannot write programs based on simple algorithms. Isn't that puzzle. So they can do, they can

execute very complex algorithms, but they cannot design for themselves simple algorithm or

they cannot write as algorithms things that might be able to do by hand in a very, very easy

manner.

(Refer Slide Time: 07:39)

Let us look at their problem solving skills. So our students have been taught how to understand

problems given in day to day conversational language, identify the quantities of interest, relate

the given problems to ideas that they know. For example, they may have to use conservation of

energy. They may have to use the principle that the derivative is 0 when the function takes the

maximum value.

So they know how to dig up these principles from their memory from what they have already

learned and apply these principles or they may have to set up system of equations and solve it.

So they know how to do that as well. So again our students know manual algorithms. They

understand problem solving at least as far as it concerns math and physics. Why can they not

write programs? Why can they not express this knowledge that they have as a program.

(Refer Slide Time: 08:39)

So here is hypothesis. We believe that students understand algorithm intuitively and not

algebraically. Let me explain what I mean by that. So let us take integer multiplication which you

study in third standard or something like that. So our students who are not taught multiplication

in the following manner. Their teacher did not come and say in the jth sub iteration of the ith

iteration multiply the jth digit of the multiplier by the ith digit of the multiplicand.

Go back to your time as a third standard student and tell me if your teacher taught this. Of course

no. Your teacher said something quite different. What did your teacher say? Well your teacher

described the algorithm as a geometric tableau. How you arrange the partial products in a

staggered manner. So let us go to paper and I might be multiplying 1234 by 567 so your teacher

made a big deal of writing these in a nice tabular manner so 7 * 4 =28 then 2 is carried so you * 7

then the next value you shift and 6 * 4 is 24.

So you either put 0 over here or a cross over here but you align. So this alignment and this

geometry is really important. I bet your teacher scolded you if you did not get the alignment right

and of course she was correct in doing that. You learned this whole thing as a geometrical

algorithm in some sense. Then our students may also have been taught many heuristics. So they

might say may be this is later on, but they might say for example that how do you test if a

number is divisible by 3.

So there is heuristic for testing numbers for divisibility by 3 may be it is divisibility by 9 and so

on. And when needed these heuristics got triggered or you may see that when you have to derive,

when you have to take the derivative of a sum then you use this rule. So again if you saw sum the

sum pattern you would trigger the rule for taking derivatives or derivatives of sums. Now this is

an exactly what is needed for programming.

What is needed well what is needed is an algebraic description. So our students need to know

something like what we have stated in the first bullet. They need to know they need to internalize

their knowledge as in the jth sub iteration of the ith iteration we need to multiply the jth digit of

the multiplier with ith digit of the multiplicand. If they know this, then as you can see they are

very close to writing the program.

Then they may know several heuristics, but do those heuristics cover the entire range of

problems that they might need to solve. How do you organize those heuristics so that you

systematically cover the entire range? This is not really taught and certainly how do you organize

that is not really taught. And this is what is needed for programming. So our hypothesis is

students know things but they have difficulty in translating from their intuitive or geometric

understanding to an algebraic understanding.

(Refer Slide Time: 12:50)

So now I want to say something about how should we resolve this problem? So very simply we

should teach students, how to translate their information or intuitive knowledge or geometric

knowledge of manual computation into an algebraic formal description that is needed for writing

programs. So, our first pedagogical proposal. Our general advice to students should be first think

of how you solve the problem manually.

Assume for now that students can solve the problem manually. If the student cannot solve the

problem manually what should we do? We will deal with that a little bit. That is an important

question, but we will deal with that a little bit and we should also note write now that there are

many, many, many problems that our students can actually saw so perhaps this is not as

important question as it seems to be.

But it is important that students do think about manually solving the problem most of the time

they do not how to solve the problem manually. Next step, students should introspect over their

manual method. By this I mean they should really think about what they are doing, what am I

doing first, what am I doing next. Are there patterns and all of this? So are there patterns am I

doing the same step repeatedly and they should write down the patterns in an algebraic sense in

an algebraic manner.

So manual could be I am doing this whole thing and times or I am doing this whole thing as

many times as there are digits in the multiplier or in the multiplicand or whatever problem

whatever parameter in the problem that you are solving. So that is what they need to write. The

second pedagogy proposal is once the students know what exactly they are doing they need to

translate from this description to the computer computation description.

So human computation to computer computation and we had to tell the students, we have to

teach the students how to do this translation. There are differences between human computation

and computer computation here is one example of it. In a computer computation we have a

notion of a variable in human computation we do not really have a notion of a variable. We may

give names to values, but that is not the same thing as having the variable.

We rarely change the value of a variable. In fact, experience with teaching programming shows

that students have difficulty in deciding how to form variables and then how to manipulate

variables in a correct manner. Here is another example. Human beings seem to see the whole

problem in a glance whereas a computer operates on a few variables at a time.

So these are some of the differences and what we need to do is to go over these differences and

tell the student how to deal with these differences. Basically tell the student that if in a manual

algorithm you are doing this in a computer algorithm this is the equivalent, these are the

equivalent steps that you should be taking.

(Refer Slide Time: 16:35)

Now you might say look isn't this obvious. Don’t students do it anyway? Well they do it and in

fact experts often explicitly say that computer computation is very different from manual

computation. Dixtra who is considered one of the founding fathers of computer science has said

automatic computer confronts us with a radically new intellectual challenge that has no

precedent in our history.

So he is saying that programming and computer computation is completely different. So what we

are saying over here is that no they are not different and in fact you should be building up on

what students already know. Now you also say that most common algorithm design advices

make up flow chart or write down pseudo code. However, no guidance given on making flow

charts and for example when people make flow charts they already assume that students

understand which is very far from the truth.

Students do not understand variables and that is one of the things that they need to know how to

translate and we will see more such things and then people talk about making flow chart or

pseudo code. They do not really give guidance regarding all of this and in one sense saying that

you should be making a flow chart isn't really helping because flow charts are already too close

to a program anyway.

So it is like telling the students well you do not know how to write programs, but why do not

write something like a program that is not fair advice. However, I am sure there are some

teachers who tell their students think about how you do this manually. If you are one of those

teachers I congratulate you, I think it is great and I think you should keep it up, but you need to

follow it up as well and how do you that follow up I am going to tell you in a minute.

(Refer Slide Time: 19:03)

So how do we make our pedagogy proposals work? So our proposal was telling the student

introspect over how you solve the problem manually and then help the student to translate

manual computation into computer algorithms. So we are going to do this. I am going to tell you

how to make these proposals work and I am going to do this through several examples which I

am going to come to in a minute.

So in this lecture I have told you what I think are the difficulties that student face in writing

computer programs. And I have proposed 2 strategies or 2 pedagogical ideas which will help

students and those are the ideas that we should teach. So in the next lecture I am going to give

examples of programming problems and how those ideas can be made to work in those

programming problems.

