
Design and Pedagogy of the Introductory Programming Course
Prof. Abhiram G. Ranade

Department of Computer Science and Engineering
Indian Institute of Technology – Bombay

Lecture - 04
Introduction and Survey.2: Alternative approaches, Summary, and Conclusion

Hello and welcome again to the course on design and pedagogy of the introductory

programming course. This is the final lecture of the first part, introduction and survey. So the

question that we are going to consider in this part is will programming be easier in another

programming paradigm?

(Refer Slide Time: 00:43)

Programming paradigm basically means a model of computation and a language as well, but

it means more a model of computation and you will see what exactly I mean by model of

computation in a minute. The reason for asking this question is the hope that perhaps there is

a simpler model of computation that is a model of computation which is easier to understand

and therefore which will enable students to program more easily.

So as we have been seeing that programming seems to be really difficult, so it is worth

looking at whether we can simplify it and so people have tried doing this and people have

looked at alternate models of computation. Here is what I am going to do.

(Refer Slide Time: 01:33)

I am going to first talk about functional programming, then I will talk about Dijkstra’s

approach. This is not so much a model of computation as it is a view of programming. How

should programming really be taught. Then I will talk about object oriented programming and

then I will talk about logo and scratch and then I will conclude with a summary of this first

part and list out the challenges.

(Refer Slide Time: 02:02)

So let us begin with functional programming. In functional programming a program is a

mathematical expression. So just as 1 + 2 is a mathematical expression, a program is pretty

much like 1 + 2 and execution is expression simplification. So if I have an expression 1 + 2, I

simplify it and make it 3. So something is changing, something is evolving and that is exactly

captured in functional programming and that is thought of as an execution of a program.

Functional programing can be done by using several languages and only one such language is

the scheme language. Scheme language is described in a really nice book by Abelson and

Sussman written in 96. It is a beautiful book and I am going to use this notation. In this

notation that the scheme language represents expressions must be represented in prefix

syntax. So prefix means the operators must come first followed by the operands.

So operator followed by operands enclosed in parenthesis or function-name followed by

arguments enclosed in parenthesis. So here for example is an expression. So this expression is

to be read as sum of 5 and 3 multiplied by the difference of 7 and 4. So + is an operator over

here and these are the operands and the result of this are multiplied together. Okay so what do

we do with this.

The basic idea is we are going to simplify wherever possible. So for example + 5 3 can be

simplified to 8. So in that case the entire expression now changes and it becomes times 8 – 7

4. So this is to be thought of as an execution. We are doing computation, and we are

executing and the expression is changing. So in fact we can think of it as we have a program

that has been given to us and we sort of keep on simplifying that program.

Then this expression in turn can become * 8 3 because 7 - 4 is 3 and then that becomes 24

because 8 times 3 is 24 and this 24 is the result of that entire programme. So as you can see

evaluation is something that you already know. A program is something that you already

know and therefore this is considered to be a really attractive model of how to describe

programs. Of course this is not all there is to it.

So 2 things I need to tell you more. So programs can contain names denoting values as well

as functions. So wherever there is a name it is replaced by the definition. So if there is a name

denoting a value, the value will replace that name. If it is name denoting a function, then the

function definition is substituted in place of the name whenever needed and of course if it is a

function definition then the argument values replace parameters during substitution. So we

will see an example of this right away.

(Refer Slide Time: 05:46)

Here is a more complex scheme expression or program. So this program is just a definition,

but let us read it first. This is an expression which defines a function fact. Fact is the name of

the function. It takes one argument n and it is supposed to compute the factorial. Inside it

there is an expression if. There is if function. So what does the if function do. If function has

3 parts to it.

The first is the test, the next is the consequent and then the last is the alternate. So for

example in this if, this part is the test, okay. This test is going to check is n = 1. This part is

the consequent and this part is the alternate. So if n = 1 then this entire expression represented

by the if statement is going to be, this entire expression is going to be resulting in 1. If n is

not equal to 1 then this entire expression is going to be resulting in this expression okay.

So let us see now how an expression which cause the factorial function will execute. So

suppose we have written down an expression fact of 2 what happens. So as we said in the last

slide the name fact is going to be replaced by the definition of fact and 2 is the argument and

2 will replace the parameter in the function. So this will become, so this entire function body

is going to be placed over here.

So notice that n is 2. So if instead of, if = n1 we will write = 2 1. So 1 is going to come as

such and then times n fact of –n1. So everywhere n is going to be replaced by 2. Okay, now

this expression that we started off with has now become this expression. It looks longer, but

actually it is simpler because we have substituted for a definition. What happens next well the

idea is that wherever we can simplify we will. So for example in this case we can simplify

this expression is 2 = 1.

So it is not equal to 1 so which means we can simplify this entire expression. So if this 2 is

not equal to 1 then it will evaluate to the alternate. So it will evaluate to this. So as a result

this big expression will become just the alternate which is over here. Now in this can we

evaluate anything? well we cannot. So therefore we will substitute for fact of 1. So fact of 1

again will go back to the definition and will put the body of the function inside this.

So this will be our new expression. We are going to have n, this n is going to have the value 1

because we called fact with 1. So our expression is going to be if = 1 1 okay, so there should

be a parenthesis over here checking = 1 1 then it should be a 1 otherwise it should be this

expression. Now we can easily check that = 11 is true and therefore this time the consequent

is returned as a result.

So our new result is going to be times 2 1. So this now can be evaluated and it has become 2.

So you see what is going on. We have expressions and we are only simplifying the

expressions and of course we are substituting for function definitions wherever be needed,

but that all those seem like standard mathematical operations. All those seem like students

already know this.

So the hope over here is that since students already know simplification of expressions they

will be able to understand programs or they will be able to even write programs in a much

more easy fashion.

(Refer Slide Time: 10:19)

So first remark which I just made, functional programming executional model is very simple

and familiar, expression simplification. It is syntax is very simple, expression syntax and here

is one more interesting point that it is often very easy to reason about functional

programming programs. So scheme programs for example, because just as in mathematics the

value of the name never changes.

Even here if I have a name n, it always means the same thing. Well in a different context it

might mean something different, but within a given context I cannot do anything like i = i +

1. So wherever I see, n, I know exactly what it is referring to. So this is another idea which is

considered to be easy, to make functional programming easy. Functional programming uses

recursion heavily.

In fact, there is no iteration as such. Recursion is sort of a standard way in which iterative

actions happen. You may note that we can always use recursion to implement iteration though

not exactly vice versa. So in any case in functional programming we use recursion and very

often it corresponds to whatever happens in mathematics. Many mathematical definitions use

induction.

So many definitions are inductive and functional programming correspondingly uses

recursion. Now recursion is maybe very natural, but recursion can also be a little bit tricky to

understand. Many programs written using functional programming are very elegant. They can

often be very small, very compact okay. However, there are some classes of programs where

this notion of just using recursion becomes very tricky.

Or the idea that we cannot change the, we do not change the value of a variable, becomes

very tricky. So for example if you are doing depth first search on graphs, it is quite hard to

express this using functional programing. Finally, it should be noted that imperative programs

are usually much faster in practice. So what do we conclude and what has the field

concluded. So functional programing is not accepted worldwide.

It does not have that much acceptance but there are some very, very strong proponents. So

what we can say is that we have learnt something valuable about programming when we

study functional programming and we should perhaps be using those principles whenever

possible. So what are those principles? So we should not be using global variables. So the

idea here is like what has been mentioned above that we want to make it easy to understand

programs.

So then if we have a name we should expect that name to have the same value everywhere. If

we have a global variable, then a function call can change the value of a global variable and

so we should avoid it. So whenever we write a statement like i = i + 1 we should regard that

as a potential mental overhead.

So i = i + 1 is not possible in functional programming and that is because that imposes a

mental overhead and we should even avoid things like this and global variables are sort of a

very strong example of that where the name for which we thought a certain value assigned

suddenly changes and especially if the change is happening inside some other function it is

very difficult to understand what is going on.

Functional programming also encourages functions themselves to be passed as arguments. In

fact, functional programming does not make a distinction between functions and variables.

The term used over here is that functions are first class citizens. Early programming

languages, early popular programming languages had a very, very big distinction between

functions and ordinary variables, but now things are changing.

An idea is like higher order functions which sort of evolved in functional programming are

now coming into standard programming languages. So for example the lambda expression

which is an important idea that arises in functional programming which I have not had the

time to go through but this idea has been inducted into C++ java and other standard

programming languages.

So what we are going to say is and how we are going to proceed is that we are not really

going to use functional programming, but wherever possible we will try to use functional

programming principles. So if it makes sense we will remember that we can pass a function.

We can pass different functions as arguments to another function and inside that function, the

function that we pass might get called or we might make sure that we do not use global

variables.

So these are some of the lesions that we can take away from functional programming, but we

are not going to use functional programming. We are not going to change over to functional

programming.

(Refer Slide Time: 16:35)

Next we will discuss an approach due to Dijkstra. This is not quite a programing model, but it

is an approach in which Dijkstra says that proving the correctness of programs is extremely

important and also deriving complete programs. So the idea over here is you are given the

statement of the problem, you decide what values we need to calculate and then you say okay

if I want to calculate these values well then I must have these values.

Or if I have these values, I can calculate these values and use step by step in a logical fashion

you decide what you can calculate, what needs to be calculate and if the two meet if what you

can calculate and what needs to be calculate at some point become equal then you have a

program, but the idea is that at each step you have a proof that if I can calculate this I can

calculate this next thing or if I need to calculate this it is a (()) (17:30) if I calculate this.

So at every point you have a proof. Now simple loop based programmes are derived and

recursion is not considered so much in this approach, but there are variations on this approach

or there is work which looks at recursion as well and this approach can be considered

successful in the sense that just by reasoning in this manner and sticking to having proofs for

whatever you do.

You can often derive quite tricky and fast algorithms so often time linear time algorithms are

derived for problems in which simple algorithms might give you n squared time.

Unfortunately, the kind of logical manipulation that is required in this approach tends to be a

little bit cumbersome and beginners find it dry and this is probably the reason that this

approach has not caught on.

So what is it that we conclude from this? Well, we believe that basic notion such as invariants

are important even in introductory program. So invariants are a very, very strong idea that

comes out of Dijkstra’s approach and we feel that that is important; however, we do not want

to go all the way and only derive programs or prove everything about a program very, very

formally, okay.

So what we are going to take away from Dijkstra’s approach that we should be stressing

invariants when we talk even about introductory programing, but perhaps other steps could be

left informal and Dijkstra’s approach is often about deriving very clever algorithms and such

and clever algorithms perhaps should not be expected in introductory programming. What I

mean by that is we should not really expect beginners to derive clever algorithms.

Because clever algorithms will require cleverness and often we tend to think of cleverness as

something that happens in a second, but before it happens in a second you need to have

experience and you need to spend some time so that you develop the intuition to generate

clever algorithms and there is just not enough time in the introductory programming course

that we should be stressing clever algorithms.

(Refer Slide Time: 20:24)

A very common approach is the object first approach; object oriented programing is arguably

the most dominant paradigm today. Now proponents of this paradigm believe that it should

be taught from day 1, okay, why because otherwise you might get corrupted by other

approaches. Books have been written about this and about teaching object oriented

programing and typically not always the application domains considered in these books are

things like designing user interfaces, drawing pictures on screen okay.

And for whatever reasons this paradigm tends to be heavy on syntax. It often appears to give

undue importance to minor issues. How do you change the colour of a text box? This is of

course not an inherent aspect of object oriented programing, but somehow when it is (())

(21:19) these are the issues that get importance; however, there are many concerns. So in

some sense object oriented programming is not an alternative paradigm for something like C

based programming or the so called imperative style programming.

It is something in addition to introductory programming or to protect more directly how can

you learn member functions without learning ordinary functions, are not member functions

necessarily more complicated than ordinary functions. So in member functions there is a

privileged argument. There is sort of a special argument which is the object on which you are

invoking the function.

There is no such special or privileged argument in ordinary functions. So to that extent

ordinary functions are easier. So when we talk to beginner should not we be teaching them

the ordinary functions first before they can be expected to understand member functions. In

general object oriented programming proponents says that it gives a more natural view of the

world.

However, there are research papers and have mentioned one (()) (22:42) over here which say

we have done surveys and studies on students and they has some suspicion or aspersions on

whether object oriented programming lives up to it is promise. So what is our conclusion,

well, we think that object oriented programming is strictly harder even if it is useful, it is

strictly harder and since we seem to be in a crisis situation let us not make things more

difficult for our students.

Let us first make sure that they understand ordinary functions and ordinary programing

before we get into objects and all the issues related to objects, okay. The last programming

paradigm that I want to survey is the so called logo and scratch paradigm. Again it is not a

paradigm as such, but it is a bunch of projects or programs that have been developed very

very systematically if I may say so for teaching programming to children.

(Refer Slide Time: 23:48)

Logo has been developed by Papert and several others and scratch by Resnick and several

others and scratch actually could be said to be a derivative of logo and scratch is not the only

derivative, there are other derivatives also. What does logo do, so logo first of all teaches

programming using graphics and geometry. Graphics and geometry grabs attention. Children

and even older students love to see pictures and especially pictures that are being drawn or

pictures that are moving or being manipulated.

There are 2 paradigms actually, there are 2 ways in which logo and scratch get used. The first

paradigm might be called a narrative paradigm. What happens here? Well, in this students

create graphical characters or they may use pre-created graphical characters and they animate

or choreograph the movements of the characters and they use this to tell a story. So a program

will essentially be a script.

So the program might say move this fairy from this tree to this house or something like that

okay. So in each step of the program you are going to do something to the characters and

something will happen on the screen. So you are programming these characters on the screen

and they may do things on the screen, that they, for example they may draw lines on the

screen as they move for example.

Scratch is especially beautifully crafted and in fact people who are artistic talents students

who have artistic talent can create their own graphical characters. Of course this is an

expression of graphical talent and many may say that look what is the programming in this

and they might indeed be right, but the creators of scratch say that the point of scratch is to

bring artistically talented people into programming somehow or the other, not fully but at

least partially.

So that they start using programming, not sort of the kind of mathematical programming that

we might want, but at least they start moving things on the screen and once they start moving

things on the screen they may want to do other things, say for example they may want their

characters to walk, so that means maybe they have to put some kind of a loop over there

okay. So it may or may not encourage students to learn the full range of programming.

To give an analogy and only analogy it is somewhat like webpage design. So you are laying

things out on the screen and if I click on this you want this to happen, you are sort of setting

things up and maybe you are not writing programs in which you need to worry about whether

there is termination or not, whether the program runs in linear time or not, those are things

which may not get tested or you may not need to understand those things when you write

narrative programs.

The second paradigm is the more general paradigm and even in this graphics plays a role, but

in this case the graphics is meant to be much more precise. Your drawing patterns which

might have intricate features, but there may be symmetry and so you might have to reason

about that symmetry and you might have to program that symmetry and of course the

languages large enough so that you can solve standard programming problems.

Actually the language is large enough in fact so that you can also do things like parallel

programming to a little bit. Logo and scratch are very successful in that they encourage

children to program, okay. So they have created the hope or the confidence that children can

program; however, it must be said that their strength is in my opinion is slightly different. I

do not believe that they have been successful in helping every child to program.

What they have been successful in is that they have provided an avenue for children who

have inclination to program, to come out and start programming. It is not clear that they can

inspire every child. They have tried to do so by bringing in this narrative model and some

additional people have come in, but again will they be able to program in the sense that we

want where they have to reason about termination and things like that?

It is not; however, the main takeaway in my opinion from scratch and logo is that they build

on what students know and like. Students like graphics, students have learnt geometry, so

students like using what they have learnt and that is what logo as well as scratch beautifully

exploits and it also shows this general idea that geometry is actually extremely rich. When we

look at pictures of course we can see iteration.

We can see repeated patterns, but not only that we have pictures in which there is recursion,

there is recursive substructure and we can write recursive programs and in fact you can write

recursive programs in logo which are very easy to understand. So I think those are the

conclusions that we should take away and we should think of exploiting geometry as a means

to teach programming. Another idea we have come out of logos what to say is the idea of

scaffolding.

(Refer Slide Time: 30:40)

So consider the following 2 assignments and tell me for yourself which is more exciting.

Okay, the first assignment is write a program to multiply 2 polynomials and the second

assignment is program this robot so that it dances. This is hardly a fair question right, 90% of

the people will say of course I want to program the robot, I mean that is so much more

excited, well it might be exciting, but for example it requires you to learn robotics.

And second making robot dance requires a lot of code, so what we do? Well, here is the idea.

So in our introductory programing course itself we may think of teaching some domain

specific concepts. So maybe we teach a little bit of robotics and then we provide the code

which will do say the higher level function. So maybe we will provide the code which makes

the robot walk and then will tell the student oh now you change the codes so that instead of

walking, the robot dances.

So this way we are providing additional material so that the students get drawn into this task

of programming. So if you have seen buildings being built or repaired, a temporary structure

is often erected on the outside, typically made of wooden planks or metal poles and things

like that and it is used by workman while building or repairing or cleaning the building and

that structure is called scaffolding.

So we are going to provide code which will be used by students not because they need to

learn that code because that that code will make it easier or more attractive for the students to

learn programming. So people have used this idea in many subjects and scaffolding has been

developed for many, many domains, robotics, data science, graphics, geographical

information system and even some others.

So this seems like a really nice idea, but we have to worry about 2 things. First of all if

students are going to use robotics as scaffolding they need to learn robotics. So if we are

saying that programming is already too difficult we have to ask the question, is it going to be

more difficult because students need to learn robotics. For some students it certainly will be

and some students might like robotics and some students might like data science, some

students might like geographical information systems.

But if he teaches only one of them we might be leaving out some students. We might be

trying to teach geographical information systems to students who wanted to learn robotics. So

scaffolding might be a good idea but we have to be careful in using it okay. So now I am

going to summarise the first part of this course and let us go over what we have learnt.

(Refer Slide Time: 33:55)

So first of all it is important to remember that worldwide failure rates in programming

courses are high. The Indian situation appear similar and quite possibly the failure rates may

not be high in India, but that is only because our exams typically are much less demanding,

but it is not at all the case that our students are being trained better than what is happening

worldwide.

So we really should be considering what is going on to be a crisis. The main disappointment

of teachers seems to be that students are not able to write programs to solve simple unseen

problems. Our hope is that students will learn programming and then they will use it just as

they use arithmetic or writing. It will be an extension of their thinking abilities, but that does

not seem to be happening if we give them a new program, a new problem, students are

finding it very difficult to write program to solve those problems.

And courses seem to be same that look they should be able to solve simple problems, but we

are at a loss to provide a definition of what a simple problem is. So perhaps we should be

doing that. We should be thinking carefully about what kinds of problems should we be

asking okay. Experts have given tests of widely varying difficulty to test programming

aptitude of students okay, so does it mean that there is no consensus about what programming

is?

(Refer Slide Time: 35:34)

Or does it mean we are lowering, the experts are lowering standards in light of student

performance. So this is on one hand as far as teaching programming to college graduates is

concerned, but there is lots of excitement about teaching programming to children. So

perhaps this is because children are given simpler problems, okay and perhaps graphics and

animation provide good motivation.

But maybe we should be thinking from this experience as to what we can do when we teach

to college students. We have seen that few approaches worry about formal correctness, but we

think that they are important and there is confusion about how to or whether to or how much

to teach algorithm design, also problem solving. We are relying on some kind of street

smartness, but we really should be quantifying or specifying that a little bit more clearly,

alright.

(Refer Slide Time: 36:40)

So to conclude let me just point out, let me just go back to a slide which I showed earlier and

let me say that the questions raised in that slide still remain. So what are the questions? Is

programming so hard, it was conjectured that it is hard and we have not really seen evidence

to the contrary. Do we need to slow down our courses? Well we do not yet know, we need to

think about it.

Should we teach differently? Well, it appears that we do not really teach how to design

programs, how to deal with unseen problems, so something needs to happen on that ground.

Are we able to motivate students to study, the piece of good news is that graphics and

animation seem to motivate children well and maybe scaffolding can help okay and finally,

are our exams fair?

So over time the test used by researchers for measuring programming competency seem to

have become easier; however, this really means that we do not know what is the fare test. We

seem to be wavering about that and my personal experience is that if you look at large

number of examinations you will find suddenly there is a hard problem, suddenly teachers

feel compelled to give hard problems.

So in my mind there is some question about what is a fair examination, a fair programming

problem for first year students and what is not. So all these questions need to be studied, we

need to think about them and that is what we are going to do in the following weeks. Thank

you, we will stop over here.

