
Design and Pedagogy of The Introductory Programming Course
Prof. Abhiram G. Ranade

Department of Compute Science and Engineering
Indian Institute of Technology - Bombay

Lecture – 19
Advanced Programming Topics. 2: Object Oriented Programming, Concluding Remarks

Welcome to the last lecture in our sequence on Advanced Programming topics. This sublecture is

on Object Oriented Programming and in this we will also conclude the, the entire topic of

advanced programming.

(Refer Slide Time: 00:37)

So Object Oriented Programming is one of the major ideas in programming but it is not readily

understandable or at least the entire topic is not readily understandable and so motivation must

be explained. Now the motivation must be explained for and then introduction should be given

for Object Oriented Programming overall as well as we should give introduction for each feature.

So let us talk about Object Oriented Programming motivation.

What can be the motivation for Object Oriented Programming? Well here is one way to go about

it. We could say something like every engineering discipline has the notion of elements or

components. So there might be basic low level components or basic low level elements. So for

example, in electrical engineering, we might have wires, resistors, switches, transistors but when

we work, when we actually do work, we are not always talking about these low level objects.

We may also, we will typically also talk about high level components. For example, we might

talk about gates, we may talk about amplifiers, we may talk about arithmetic logic units and

these will be big components which might internally contain low level elements but we may not

want to worry about what they contain internally, okay. So we might, we might want to work

with these high level objects rather than every time worry about what really is going on at the

lowest level.

Now likewise, when we write programs, it seems like natural idea, reasonable idea that instead of

always worrying about basic variables say of type, integer, double character which are sort of

analogous to wires, maybe we should, we would like to program with some bigger objects, right.

So would not it be nice if instead of just getting integers and doubles when as ask for them, why

do not we, why cannot we get readymade software components for representing a queue.

So we can, we should be just able to say, oh, give me a queue, just as we say give me an integer

and I am going to call it x y z, we could, why should not we be able to say give me a queue and I

want to call it p q r, okay or why just queues, why not component for representing a car or may

be a something like a bus ticket or maybe something abstract like an agreement or maybe

something which represents an entire planet, okay.

Now we would like to use the software components just as we use low level variables. So we

should want, we would like to create them at will whenever we want them, we should be able to

pass them to functions, we should be able to make assignments, okay. So essentially, I mean, if

we are putting up a wish list, these things like, these things seem like the natural things to ask for.

Now a component we are talking about is called an object in Object Oriented Programming and

the science of designing and using components is called Object Oriented Programming, okay. So

this is sort of a broad motivation that you can give for Object Oriented Programming. Here is a

different way of saying the same thing perhaps, okay.

(Refer Slide Time: 04:20)

So you could say that any large system is easier designed one part at a time but for that we need

to find a way to break it into parts. So what is a system? A system consists of data holding the

state of the system as well as code defining allowable operations. So when we talk about

functional or procedure, procedural decomposition or we talk about top down design, we

typically mean that we are going to break the code into smaller pieces or smaller functions.

But managing data, large amounts of data is also difficult, okay. So why not break up data into

natural parts, into small parts in some natural manner. So the natural decomposition strategy is

that most systems naturally consist of separate entities. So we are going to decompose the code

and the data by the entities, okay. So basically we are going to create at the level of a program

something called an object which will consist of the data associated with an entity as well as the

code related to that entity, okay.

So this is a natural way of decomposing things and that is what is Object Oriented Programming.

Now we are going to put the data and the relating code together, okay. So that is also another,

another structural principle and because the data and the code are together, presumably it is going

to improve the readability of the whole thing. So essentially, we are going to say that each object

contains all the data or all the variables required to store the data for that object and in principle,

it contains code as well.

But of course, in practice, if you have several objects of the same type, then the code for them is

the same and without really you worrying about them, the code will somehow be shared. So

there will be a single copy of, of the code but you can, if you want, you can think of it as each

object has its own copy. It does not really matter. Now individual OOP concepts should also be

discussed separately and motivated. So far example, one basic object oriented concept is

aggregation or composition.

(Refer Slide Time: 06:52)

And what does this say? Well this says that we should group together simple variables to form or

compose a larger variable as might be associated with an individual entity and this is nothing but

a structure. So in some, some sense, structures are starting point of Object Oriented

Programming, okay. In C++, we have seen that structures are classes and that is the reason. So

classes are sort of the key Object Oriented Programming language construct and in fact, they

generalize structures.

So the C++ designers say that, oh, we are not going to have much distinction between structures

and classes and there is the principle that you must use or you must ask your students to use

really, that you must create a struct for each important entity. Member functions, simply embody

this idea that the code associated with that entity should be kept along with that entity and so we

have the notion of member functions.

So this helps in decomposing or distributing the code as well. Now member functions also do

something interesting which is, they allow us to hide data representation without affecting the

user program. So for example, here is a structure definition. So we are defining a point. Now

inside it, we have 2 member functions. x is a member function and y is a member function. Why

do we have member functions rather than data members?

Well, if we do this, the user does not know whether internally we store the x y coordinates or we

store the r theta coordinates and if we are storing r theta coordinates, we will have to generate x y

when the user needs that but the user is calling the function anyway. So the function code will

generate r theta. Now this is useful because it gives freedom to the implementer. The

implementer may decide later on that no, no, no, I really want to store r theta for some reason.

Where the implementer is free to change the implementation without the user of the structure

having to change his or her code. So the degree of couplings so to say, gets reduced because of

this. Now the next notion is that of a copy constructor/destructor and assignment operator and in

Object Oriented Programming, we are allowed to specify the behaviours of these operators as

well, okay.

So basically we are defining these software components and we are saying that look we want

these software components to be used in this manner. So we are passing an object by value to a

function, when the copy constructor is invoked and that way we get to say what exactly happens

when we pass an object to a function. Similarly, when an object goes out of scope, what exactly

happens.

We get to tell the compiler that by writing a destructor, okay. Basically, this kind of

customization is to be needed when our components use heap memory. So we talked about

earlier that the heap memory has to be carefully managed. We need to delete things or maybe we

make copies and our copy constructor or destructor and even the assignment operator will have

to be overloaded to make these copies. So overloading other operators is also possible because it

can provide compact and natural syntax.

(Refer Slide Time: 10:33)

So for example, it might be natural to overload + and * operators say for a class which represents

vectors from physics. So here is an example. So we might have a physics vector class and inside

that we have defined the operator+ on vectors as well as the operator* which is an operator

between a vector and a double. So we might define vectors u, a, s and we might write the

familiar formula s=ut+1/2at square.

So what is happening over here is that t squared upon/2 is calculated, that is a double and that

can be multiplied with the acceleration which is a physics vector, u can be multiplied with t

which is also a physics vector and the 2 physics vector can be added but notice that this

assignment operation looks like the physics formula. So, so it is, it is easier for us to write things

like this if we have overloaded the operators in a suitable manner.

Now another principle from object orientation is that of hiding information from the user of the

function. So by creating public members, we allow users to use some objects and prevent the rest

of it which are private and that way the user is forced to only use the public members and not

other members and the user is forced to use the, use our software components or use our object

in the correct manner.

So this is sort of like why we package electrical devices, I mean, we do not want the users to get

shock. We want the users to use that device only in some specified proper manner and therefore,

we package them. So this public/private business is sort of like that. And again, the developer

can provide a new implementation in what goes on inside that packaging can change so long as

the same kind of controls are given (()) (12:55). So, so long as the public members do not

change, signatures of the public member functions do not change, the user, he does not know but

the implementer can change the implementation.

(Refer Slide Time: 13:15)

The last concept in Object Oriented Programming that should be talked about is inheritance and

here is the motivating example. So suppose my program deals with shapes to be shown on the

screen just like our simple CTP library and our simple CTP library in fact uses inheritance. So all

shapes have screen position, orientation and scale but each shape might have some different data.

So for example, a triangle will have 3 coordinates.

A circle will have a center and radius, okay. Code for moving or rotating shapes is identical in

some ways. The code for drawing itself or rendering the shape on the screen is different. So as

you can see different shapes might have some data which is the same and some code which is the

same but they will also have some code which is different as well as some data which is

different.

Now the question arises, should we declare all shapes to be the same type or same class or

should we declare different shapes to be of different types? So if we choose a single type for all

shapes, what happens? Well, then we will have to have a flag variable for each object telling

what shape it really is. So if the flag says, it is a circle, then we will access the center and radius

members of that object.

If the flag says it is a triangle, then we will have to access the coordinates, the 3 pairs of

coordinates which might be stored inside that object. So each object must have members to store,

store all types of shapes, okay. So that object will have to store the 3 pairs of coordinates as well

as center and radius and as well as other attributes that other shapes might have. And the code

which you write, say for rendering, will have to have cases.

So if you will again check is the flag saying that this is a triangle, then I will execute the triangle

drawing code, okay. On the other hand, you could have multiple types for all shapes. So you

have a type for a triangle, you have a type for a circle but there is some disadvantage here as

well. Namely the common code will have to be copied in each type, okay. Because after all the

types are different.

So you will have to have copies of the code. You will have to have copies of the declarations of

the common data as well, okay. And then here is an interesting difficulty. I would like to maybe

have a queue of shapes which contains all the shapes that I want to display. So if the shapes are

of different types, then I cannot have a single queue. I will have to have a separate queue for each

type. So our management just becomes very cluttered. This is where inheritance helps.

(Refer Slide Time: 16:11)

So in inheritance, I can define a shape type or class, okay and then I can define circles and

triangles as subtypes or subclasses, okay. Code or data common to all types or shapes will be

defined in the shape class. Subtypes will automatically inherit the common code and data and

you can define additional code or data for each subtypes. So the rendering code will be defined

separately inside each subtype, okay.

And this is the interesting thing. Our objects will behave sometimes like it is a triangle but it

might sometimes behave like it is a shape and so you can have a queue in which you can say

look I am going to put shapes rather than saying I am going to put circles and inside that, you

will be able to put circle, objects as well as triangle objects, okay. So this is called polymorphism

and this will be implementable under inheritance, okay. So many examples detailed discussions

of this are given in the book and certainly this is the topic but at the Tier 2 level.

(Refer Slide Time: 17:23)

Now once you create inheritance, you should also give users opportunities for using inheritance

not just tell them that the simple CTP library has been done in this manner. So simple CTP itself

contains a class called composite and the composite class is used for creating composite objects.

So here is how you can use it. You can create a class called Wheel by inheriting from this

composite class and inside the composite class, you can use simple CTP objects like circles and

lines or other composite objects that you might have created.

And this, this composite class contains code which will put together all these objects and it will

allow you to instantiate Wheel classes wherever you are. So I am not going to discuss the details

of it but this is how you should do things that if you discuss a concept, student should have

opportunities for using that concept, okay. So in this case, many students will want to create new

shapes because they will want to create complicated objects. So they will naturally feel that they

must learn inheritance and how to use inheritance.

(Refer Slide Time: 18:40)

Alright, so this concludes what I wanted to say in this sequence of lectures about advanced

programming topics and let me just make a few concluding remarks. So if you have time in your

course, you should select some of the advanced programming topics which we discussed, okay.

Advanced programming topics will be useful for CS majors as well as for non-majors, okay.

These days even non-CS majors will do things like graphics.

They might do things like even using parallel computing. So advanced programming topics and

the notion of says managing heaps will be important to them. And of course, standard libraries

are important for everyone. So certainly you should talk about those, okay. Another possibility is

to discuss algorithm design topics, okay. So they have been discussed in so many different

chapters. So those are also a possibility.

(Refer Slide Time: 19:46)

Here are the references that I used for the book, for the 2 books and with that I will stop. Thank

you.

