
Design and Pedagogy of the Introductory Programming Course
Prof. Abhiram G. Ranade

Department of Computer Science and Engineering
Indian Institute of Technology – Bombay

Lecture – 18
Advanced Programming Topics.1: Advanced memory management, Standard Library

Welcome back, we are talking about advanced programming topics and the topic for this sub

lecture is advanced memory management and also the second topic; a different topic standard

library.

(Refer Slide Time: 00:34)

So, on advanced memory management technique begin by saying that in the core curriculum, the

notion of the heap and the operations new and delete should be discussed. Now, to use these

operations is a little bit tricky because they can lead to memory leaks and dangling pointers and

preventing these things require some thought, so how to do this is a part of the TL2 core not the

basic core.

In the basic core, you can just say that there is a heap and you can allocate and deallocate using

new and delete, okay but if you want to become good professional programmers, you need to

know these things and even in the introductory programming course, you can give some

introduction to it. Now, the typical problem is this; suppose, we have a pointer, so suppose that

pointer is part of an object which is being deleted.

Or the pointer itself going out of scope, what should we do? What should we do if the pointer is

pointing to some object, okay, so we have some pointer which is going to go away and it is

pointing to some object, what should we do, Should we delete the pointed object or should we

leave it alone, okay, so we should delete the pointed object if the object is on the heap and it has

no other pointers, okay.

(Refer Slide Time: 02:29)

Why is that? Well, if it has no other pointers and if we do not delete, what will happen? So, let

me take a picture, here is the pointer which is going out of scope say and it is pointing to some

object and this is on the heap, if you delete this, then this object has been given to us and we do

not have any other pointer to it, which means that we are not going to be able to use this memory

and it is still marked as; used by the heap management functions.

So, this is what is typically, this is what is called a memory leak, so here allow memory leaks,

your heap will start getting more and more such dead cell and you may eventually, loose the

entire heap because everything in it is dead cells, okay, so this is not something that you want to

do and therefore, if there is no other pointers, then we should delete this object because you

know that that is not going to be used by anyone, you do not need it.

(Refer Slide Time: 03:48)

But there is also a reason to say we should not delete it, if the object is not on the heap, then we

certainly should not delete it but even if the object is on the heap, okay, so here is the object on

the heap, it is pointed to by a pointer which we are; which is about to go out of scope or which is

about to be deleted itself, then if there is an additional pointer and if we delete this object, what

will happen?

If we dereference this pointer, when we are going to get to; we are going to point to a region of

the heap, which has not been given to us and that is called a dangling pointer. So, if there is

another pointer and if we deleted, then we are going to get dangling pointers. Now, the

programmer may not know whether there is exactly one pointer or whether there are many

pointers.

And even if the programmer knows, the programmer may forget, I mean after all the programmer

is human, we can forget to initialise, we can forget to delete but we should not but still we do, so

what is needed is some automatic protocols for memory management. So, things which will take

care of these things for you, okay, so course this is TL2 core, okay, now there are 3 things that

happen, we are going to discuss 2 of those.

So, of the first is the deep copying protocol, okay and this is used in the C++ standard library

which we are going to talk about next and there is a detailed discussion of this in the book, then

there is also a reference counting protocol, so this is implemented using the standard library class

shared ptr and then there is the garbage collection protocol, which is not really relevant for C++

but you should mention it and explain it in a little bit at least, okay.

(Refer Slide Time: 05:44)

So, what is the deep copying protocol? So, basically the idea over here is that every object

allocated on the heap is always pointed to by a single pointer, so this is our invariant so to say,

okay. Now, what is this mean; if a pointer to a heap memory is copied then what should we do;

so let us take a picture.

(Refer Slide Time: 06:06)

So, we have the heap memory, there is the object inside it which has been allocated and we have

a pointer, well the pointer itself could be inside the heap but I am just showing it outside of that

because I have drawn these heaps slightly small, so it is pointing to this object, now suppose we

make a copy of this, so this is some ptr, then we make a copy let us call it ptr2 and we make an

assignment ptr2 = ptr1; ptr, what does that mean?

Now, this will also start pointing to this object but now our invariant will be violated if we just

do this copy and live with it, so what should we do, if you want to have the invariant and yet the

program behaviour, the way we wanted, so what we should do is; that instead of just making this

assignment in addition to the assignment, we should make a copy of this, so the new picture

should not be what I have shown.

(Refer Slide Time: 07:11)

But instead it should be that we have the object over here, we have the ptr, then the moment we

assign ptr2 = ptr1, the assignment somehow should be changed or modified, so that we make a

copy of object and ptr2 actually points to this, okay. So, why is this a good thing, well if we

dereference ptr, we are going to go to object, if we dereference ptr2, we are going to go to object

also, well a copy of it but the data unit is going to be the same.

So, our program is not going to know the difference, okay on the other hand our invariant has

now been maintained, now this is a little tricky if this object itself contain some pointers, what

will happen? Well, if this object was just a copy of this, then we would get a pointer to this lower

object but actually, the way this works is; we really should make a copy of this object as well and

this pointer should really be pointing over here.

So that is why there is this name deep copy, okay, what if a pointer is deleted or goes out of

scope, well if this pointer goes out of scope, we know that look nothing else can be pointing to

this because our invariant guarantees that and therefore, we can delete this but of course, if we

delete this and if our invariant is applicable to this pointer as well then this object will also have

to be deleted, so we will need to set up that chain of deletions, okay.

Now, yeah, so if the copied object has a pointer which must also satisfy uniqueness, then its

pointed object must also be copied and hence this is called deep, deep as opposed to superficial,

superficial but say something like this, if I write ptr2 = ptr, then this is just this object being

copied into this, okay but even here, the lower object is also copied and if there are further low

down object that they will also be copied.

So that is why this deep opposed to superficial, so how is this protocol to be implemented, I

means this seems like really complicated, okay but actually it is not, if you use the copy

constructor and assignment operator and if you define them suitably and again the definitions are

not too complicated and also the destructor, then all things happen behind a scenes for you, you

do not have to worry about that, the user does not have to worry about that.

And again, the recursive nature of all of this will sort of make sure that exactly the right things

happen, okay, so this is discussed in the book and as a T2C topic or TL2 core topic, it can be

discussed, okay. Now, in the book the implementations of the concatenation operator,

concatenation operator is also given and that will also require some amount of deep copy, okay.

(Refer Slide Time: 10:35)

So, the second protocol that I am going to talk about is the reference counting protocol and this is

also something that you should potentially consider and teaching as TL2 core, so this is

implemented by the shared ptr class and for this, you need to use the header file memory, this is a

standard library class, okay. Now, in this case instead of having the requirement that every object

be pointed to by exactly one pointer, we are going to allow multiple pointers.

So, we will allow a situation like this and of course, this situation is better in some sense than

allowing multiple copies, why it is better? Because well this is going to potentially use memory

more efficiently, okay, all right, now here you still need to know when to delete the pointed

object and so what we are going to do is; we are going to keep track of how many pointers are

pointing to object.

(Refer Slide Time: 11:49)

So, after you write this assignment, somehow in our bookkeeping, the count for the number of

pointers which might originally have been 1, should become 2 instead, okay, so the assignment

operator for the pointers has been redefined by the header file; the standard library and that is

available to you through the header file memory and that redefined operator will actually change

the reference count to the count of how many references are there to that pointer, okay.

So, because there is this pointer, which is counting how many references are there, this protocol

is called the reference counting protocol, okay, so if the shared ptr is copied, then the reference

count is decremented, if shared pointer is destroyed, then the reference count is decremented, not

only that if the reference count becomes 0, so now if I; if ptr2 goes out of scope as well as ptr

goes out of scope, then this reference count will become 0.

And now, the code for destroying a pointer will itself called the destructor of this object as well

and it will be deleted from the heap, so all this can be set up but in this case, you do not have to,

it has already been done for you and it is available to you in the header file memory, okay. Now,

there are some caveats here, mainly that if you have circular chain of pointers, then this idea will

not work.

So, if you are sure that you are not going to have circular chains of pointers and most of the time

we do not have circular chains, often we do not have circular chains of pointers, then the

reference counting protocol will work, if you do have circular chains of pointers, then there is

something called weak pointer which can be used which also has been provided, okay. So,

basically instead of using ordinary pointers, you essentially use shared pointer throughout and

that is really the only change you want to make.

(Refer Slide Time: 14:03)

And so, it is a really friendly library, okay, so you definitely should use it, okay and this has been

discussed in an appendix of the book including a discussion of weak pointers. Our second topic

in this lecture is the standard template library, okay. Now, the major advantage of C++ over C is

that it provides a powerful library of algorithms and data structures, all the basic data structures

like dynamic arrays, lists, balanced search trees and priority queue are elegantly supported.

Because of template arguments, each data structures can be instantiated for any type and

something like this is impossible in C, in C, you would have to write a separate code for each

type, so if I have to want list of integers, I will need separate code from if I want to list of circles

or some other structure, then there is a beautiful notion of iterators, which enables data structures

to be accessed really without worrying about pointers, okay.

If the iterators are some kind of generalised pointers but they are given to you without you

having to worry about memory allocation and things like that so, they allow you to step through

the data structure in a very nice elegant manner and the dynamic memory allocation happens

behind the scenes, so things are really clean and safe, okay and the dynamic memory allocation

in case of the standard library implements deep copy.

So, this really means that unless you really want a copy to happen, do not make copies instead

use references to the same pointer, okay, same name, this is very safe that has been tested, okay

and I would say that when you write C++ programs, the standard library is so good that you do

not usually, you may not have to write any data structure code at all, the library is usually just

adequate, okay.

(Refer Slide Time: 16:14)

So, I am going to talk about 3 examples, okay but there are more, okay, so these are discussed in

the book, as well. So, vector, we have talked about it a little bit, so I should say that the vector

class is a better class than the list of C, okay, so but it serves sort of like what you would do with

list. In C, if you want to implement a list, you would actually have to write code in C++, it is

given to you.

And in most applications, it is better the list, it needs less space and it is much faster and for

example, graphs are often represented by adjacency list that is what, in fact there is a name that

graph has an adjacency list of presentation but in C++, you should use an adjacency vector

representation because that will be much more compact and it will be; it will allow you to do

things more efficiently.

The beautiful point about vectors, which are implemented by the data structure called dynamic

array is that it provides O of 1 time appending as well as indexing, okay and they are better than

arrays because I can pass a vector and a vector has a member function called size, which with tell

me what the length of the vector is or the size of the vector is and I do not have the pass the

length in addition as I need to pass for an array.

So, it is actually better than array but it looks it does everything that an array does and this does

more, okay, so I can copy of vector, if I want and I can do this in a single instruction, in the

single assignment statement without having to write a loop and then predefined sort operations

are also available and this is also something which makes vectors very convenient.

(Refer Slide Time: 18:00)

Then, there is the standard string library which we are talked about it but there are more member

functions and again, this should be emphasised, so it is very safe and convenient, the storage

management is hidden, no need to worry about reading past the end of the array plus gives

concatenation, indexing is available, powerful library of search and replace are given to you and

it is much better than null terminated arrays, safer and convenient, okay.

Now, you could teach null terminated array because say for example, the as a programming

exercise, concatenating to strings given a null terminated array, it is a good exercise but if

somebody is writing code to do something other than just manipulate strings just for the purpose

of a programming exercise, somebody is writing production course of to say that they must use

the string class other.

(Refer Slide Time: 19:10)

So, they will spare themselves a lot of agony and debugging, okay, all right, the standard library

also contain something called the map, so a map is used for implementing associations, okay. So,

there are 2 maps actually, there is a map and there is also something called an unordered map,

which is implemented by hash table, so a map implements associations using a balanced search

tree, okay.

So, what is an association? So, for example I might have an association between the names and

roll numbers, so a map provides an easy mechanism to store and access associations, so here is

code which is doing that. So, for example, I might have an association called roll number, so

what is roll number; a roll number takes as sort of a generalised index, a name or a string and

returns the roll number associated with it.

So, I can write roll number of Abhiram to = 12345, to equal the number 12345, so this is going to

store 12345 in the association roll number and associate the index Abhiram with 12345, now I

can print roll number of Abhiram and it will pull out what was stored at this index so to say, so a

map really looks like an array but instead of restricting the indices to be integers, we can have

arbitrary strings or even structures or we can have anything, pretty much anything as an index.

So, long as it satisfies some ordinary properties, so let me not go into detail of it but a map really

is a very useful mechanism as you can see you would need you would often need to know the

name, the roll number given the name and vice versa as well, so this is a very convenient

mechanism and it is given to you and it has been debugged and tested and it uses the most

efficient data structures.

So, it is really just a perfect arrangement, so the access is logarithmic time, using balanced search

trees internally. Now, using iterators you can step through a map, so I can say that will give me

the first element of this roll number, so it will give me that roll number of that person whose

name is smallest or comes first in the alphabetical order, so I can say give me the first pair in

your alphabetical order.

So, in this way I can print out roll numbers versus names in alphabetic order of the roll number,

if you wanted in alphabetical, I am sorry, alphabetic order of the name, if you want to printed

according to the roll numbers then of course, you can sort by the roll number and get it printed,

get that printed as well. So, this concludes the topic of the standard template library and we will

stop this sub lecture here, thank you.

