
Design and Pedagogy of The Introductory Programming Course
Prof. Abhiram G. Ranade

Department of Computer Science and Engineering
Indian Institute of Technology-Bombay

Lecture – 11
Basic Ideas In Our Approach.6: Remarks on individual topics -2, Conclusion

Welcome back we have been talking about the design of the introductory programming codes.

We discussed it at the level of outcomes and topics and now you had filling in some details. So,

now were going to look at exactly what we expect to be talked when we talk about programming

or writing programs.

(Refer Slide Time: 00:41)

So, writing programs is really the focus of the centroid of the course and so what exactly do we

want here. So, students must somehow or the other not explicitly as such but in any time you talk

about programs you should talk about. the standard strategy, what is the standard strategy

understand the problem. Okay understand it understand the problem we said means device thing

input input instances and corresponding values.

So, what value is needed for what input so at this level the students must understand the problem

they must be able to figure this out on their own. Then they should figure out how to solve it

manually. Do not even get to a computer unless you know how to solve the problem on your own

so forth of this they may need to collect some information about the problem. So, the problem

about numbers about digits of a number about physics.

Whatever it is the student has to maybe shift gears a little in hand and go into a mode and when

he or she remember that what he or she has learned about these topics. So then the student has to

make a plan now here in general it might mean something like break up the task or try to satisfy

constraints gradually. But more often it might mean that the students already know how to solve

the problem manually or it is a relatively simple thing in this course.

We have not been expecting students to invent very very sophisticated algorithms. So, the

student will probably do the step fairly fast okay maybe trying some standard strategy such as try

all the possibilities. Okay but what the student has to see is what are you going to compute at

intermediate steps. So, just as for the problem of calculating the value of e we say back in the

iteration were going to calculate them in the I iteration we are going to calculate 1 over i factor.

So, when i say make a plan and here i really mean this describe what you are going to do in your

iterations and write it down. Okay so formulate invariant that you would like your code to satisfy

and only then try to write the code okay. So, execute the plan which means write the code review

the program and see if it can be improved yes okay. so that is what i want to state about writing

programs to bill have a lot more discussion of this when we discuss pedagogy.

(Refer Slide Time: 03:43)

Data structures and standard library so the motto here is understanding pointers but avoid using

them, low level features are very error prone and hence this warning. So, vector class from C++

standard library should be taught in my opinion. So, it is a class which is almost core i would say

there are three in the core but of course you can do without it. C programmers do without it but it

is such a great class that such an easy class to use as well.

That you really should construct consider it in core. Extensible array useful in most situations not

only where arrays are needed but even linked lists may be used in C and you get it for free

essentially. You do not need to write any core to implement a vector it is far safer and much more

efficient linked lists. It is templatized on type so which means it works for all types. It does

memory management on its own its not visible to you.

So, you get something really clean and elegant. String class from C++ library is similar okay. It

is far convenient and safe as compared to null terminated strings of C and allow this to have this

mental image that strings just like ints they may be long but they are there. They are there in

where I mean it does not really hurt if you think of the strings as residing in your activation

frame, they actually do not reside in the activation frame.

But you can think of them as a redesigning activation frame just as you can think of ints as

residing in your activation frames. Bap tests and containers are other powerful container

structures from the standard library but those are two core and they had actually very powerful

they have this notion of iterators which enable you to navigate through data structures very

conveniently and they are discussed all of these are discussed in chapter 22 of our textbook.

(Refer Slide Time: 06:02)

Compiling testing and debugging programs is an important skill expressed rating and then for

very important to assure your students that it that it is something that everybody does and

everybody does comfortably well with practice. Okay first of all encourage students to use text

editors which will indent code. If your code is not indented, it is very hard to spot mistakes you

may think that a block is ending at a certain place whereas it ends at a different place.

And therefore no wonder your code is doing something wrong okay and your editor may not

immediately have the indentation feature plug in might be needed. So, what you should do as a

teacher is to get information about this and tell your students that look if you are using this editor

this plug in is there and use it. hit as you did this blog instead and use it. You should encourage

students to create test cases before writing code.

Part of the reason is that students should understand the specifications first and that they create

this case this is proof that they have understood specifications. It is shocking that even

experienced programmers might start writing code before they fully appreciate all the intricacies

of the test of the specification that are given to them okay and test cases should be stored in input

files which can be read by input redirection.

So, you should teach input output redirection somewhat early on. Encourage students to put

plans as comments in code because they would have been debugging okay and of course it would

mean that they first of all have a plan in place. Teach about assertions now many students do not

realize they can liberally put print statements which will help in debugging. It is obvious but they

do not realize. So, tell them.

(Refer Slide Time: 08:17)

Analysis of running time. in my opinion TA2 core as we say is it is core so let us talk about it a

little. So, a simple operation is required one step that is basically the guiding principle arithmetic

operations require one step but they do not all require the same amount of time not one step but

for practical purposes of this course it is convenient to think of them as one step similarly storing

a variable storing a value into a basic tape variable int, double float takes one step ahead.

So, chorally of this is time assigning to a structure variable is proportional to the size of the

structure. Dereferencing a pointer takes constant time indexing into and it takes constant time

one step think of it as one step. So. the second idea in analyzing running time is often not to

worry about every operations operation but worry about important operations. So, if you are

evaluating a series you may be asking look how many multiplications am i doing.

Because those are the dominant operations or multiplications or divisions whatever. So, you

might see that the number of operations is proportional to a square if you evaluate each term

separately or it might be that they are proportionate to n if we evaluate the ith term using the i-

1th. So, i would recommend that when you teach how to evaluate e you do a quick calculation

you tell students how many divisions they did or multiplication of or whatever.

And do not really dwell on this too carefully you should say that proportional to n square can be

written as a short form as n but again o often has a formal meaning it is too early to talk about the

formula. Okay so proportional to n can be written as O of n and proportional to n square can be

written as O of n square do not talk about the formula. So, this is basically the extent to which

running time should be analyzed in this course.

And the discussion may happen while talking about specific algorithms you probably do not

need to. devote a lecture to this or anything.

(Refer Slide Time: 10:58)

So, finally how to be inculcate belief what exactly what part of you hoping to accomplish. So, we

want to persuade students that computers can solve problems in all fields. So, we have to give

good examples for it okay we do not give details just have to sound right or we should be that

look students will think oh this seems reasonable we have to sound reasonable. So, text

processing searching if you want to say that computers can do it.

Then you can say that look test is represented as a sequence of numeric codes. So, now if you

want to search we are searching the numbers we are comparing numbers and therefore. Students

can believe that oh yes text processing or text searching can be done. So, searches finding

patterns image processing the images discretized and represented sequence of numbers again

recognizing things like finding patterns.

More complicated example is weather prediction how does that happen now this is a subject in

itself we cannot explain all of that. But I feel we should explain something here is what we

should explain so we should say that to do weather prediction we are going to set up a system of

the creations and our unknowns will be pressure temperature humidity whatever different points

or times on the surface of the earth and we will relate them using laws of physics.

So, if we know the initial conditions we will be able to calculate the values for subsequent time

steps this is about it we cannot say what laws we are going to use because those laws are a

science by themselves. But should state at least this much so this is going to persuade the student

yes. it could be predicted okay and that is going to improve his respect for our subject. Okay we

set up the systems we solve the system.

So, then we should do a detailed discussion of an easier but important computation so we cannot

talk about weather it is too complicated but we can and we very we should talk about simpler

physical systems. So, for example the gravitational situation. everybody laws newtons law of

gravitation everybody knows newtons laws of motions motion and using those we can in fact

predict reasonably well how say planets in a solar system move.

And that calculation is one of the classical calculations that people do astronomers do this

conclusions calculation all the time and we can describe it we can describe it we can get students

to programming this is something that will increase their belief in the utility of computers and

this is discussed in chapter 19.

(Refer Slide Time: 14:19)

To inculcate belief, we should assign programming problems from many areas as possible Math

finding roots calculating that functions physics, kinematics calculations that have additional

calculations which we just said. Tax calculations games can be programmed graphics and

pictures. So, computers are good with numbers that students should be persuaded like computers

are also good with pictures and animations.

This will needy some additional code what is called scaffolding code and we should provide it

okay. The more areas we can bring in the stronger will be the belief.

(Refer Slide Time: 14:35)

We should provide the domain knowledge whenever it is needed. So, if you say write a program

that prints the number of 10 by reversing the digits of a given number. So, we need them domain

knowledge how to manipulate digits so for example students need to know that x/10 gives the

least significant digit. x/10 gives the number of 10. x time shifts the digits of a number to the left.

And if I want to get the number the value of a number itself I can use this formula to calculate it

given the digits Now these facts are expected to be known by students after all they are taught

maybe in primary school. But students may have some difficulty so remind them be nice to them

and remind them okay in general if you want our students to write programs for solving a

problem in domain x.

We should revise the basic facts principles formally of domain x. Very quickly we do not have

teach them we just have to remind them okay. Revision could happen in class by solving another

problem front from their domain or by a giving a set of printed notes.

(Refer Slide Time: 16:04)

Okay so we now come to the conclusion of the sequence of lectures. So, i want to summarize so

what is our approach about so first we are going to stress manual computation. Manual

computation is important. Students should first find a manual algorithm before finding a

computer algorithm before writing a computer program. Problem solving strategy learned by the

student through school should usually be adequate for inventing the manual algorithm.

We are not going to teach problem solving strategies we might just do some fairly simple

commonsense things but elaborate problems solving strategies there is no time in this course.

Now what we do teach is teach strategies for translating from manual algorithms to computer

algorithms to computer programs okay. Then we are going to encourage students to use and

master simple language constructs. We will teach some clever algorithms to build excitement.

We will take programming problems from many areas okay we consider areas that our students

have studied. and want to study which are consistent with their career goals. We are going to

revise the relevant facts. We gave you a detailed list of topics that we are going to cover in our

syllabus. We also talked about what exactly we meant and what exactly we intended to teach for

those topics,

So, in the next lectures we are going to talk about Pedagogy how exactly we will do the teaching

okay. Yes, we also talked about talk about compiling testing debugging this can be frustrating

and so we should hand hold as much as possible.

(Refer Slide Time: 18:37)

So, final remarks regarding students we should not despair about their capabilities students while

they perform if we can motivate them as better than maturity taste and career grows. But you

should remember that the syllabus is a compromise between what you would like to teach what

students would like or can do and what will be possible in the given time and resource. So, we

need to iterate over it.

(Refer Slide Time: 19:05)

So, these are the references and there is more I will not go through the references but it will stop

over here. In the next lecture, we will talk about how to teach all of this or the pedagogy of the

course. Thank you.

