
Design and Pedagogy of The Introductory Programming Course
Prof. Abhiram G. Ranade

Department of Computer Science and Engineering
Indian Institute of Technology – Bombay

Lecture – 01
Course Overview

Hello and welcome to the first lecture of the course design and pedagogy of the introductory

programming course. I am Abhiram Ranade of IIT Bombay. Today I am going to give you an

overview of the course.

(Refer Slide Time: 00:37)

Let me begin by observing that the introductory programming course is very important. It is

typically the first course in the CS curriculum and programming forms the foundation of

computer science. Because it is the first course, it can shape student’s attitude towards all of

CS, so if they like the first course, if they like programming then there is greater chance that

they will like all of CS.

Programming is also important for non CS majors. This is because many of these students

find jobs in IT industry. So it is good if they have a solid foundation in programming and

even if they do not take up an IT job and do their engineering or science jobs, note that these

fields use computers heavily. So even for that it is vital if they have a good knowledge of

programming.

Finally, a well-known computer scientist one of the fathers of computer science you might

say Donald Knuth has said that the ultimate test of understanding any topic is whether you

can write programs related to that topic. This is because when you write programs you have

to know the topic inside out, you have to know what happens in every case because in your

program you will have to consider every case.

So you can write programs only if you know the topic very well and in that sense

programming is really testing your knowledge. Now computer programming is a fairly

unique course in that it allows students to build something. If you look at what students have

learnt or what they have done until they do the first year course in college, you will see that

they have done things like memorizing facts or even understanding facts and solving

problems.

But they do not produce anything, they might do some projects here and there but those are

small projects and nothing like a working model or anything that works comes out okay but

computer science or computer programming enables them to build games maybe build things,

so a program is almost like a live object and computer programming allows you to create

something that interacts with you and that is very thrilling.

Now programming can be about anything, it can be about mathematics, it can be about

engineering, it can be about commerce, it can even be about art, it can certainly be about

games and it can in some sense you can explore the whole world, it can be about biology.

Bioinformatics is a big field these days. So you may have likings and programming facilitates

your tastes and your likings.

And last but not the least, there is a psychological aspect to all this as well. Throughout

childhood our students have been obedient students or we like them to be obedient students.

What that means is they are accustom to following orders; however, when it comes to

computers, they are actually in charge, they are actually commanding, they are in control of

the computer.

So this psychological change I think can be extremely liberating. So what does all this add up

to? It seems to me that there is potential in all of this for students to fall in love with

programming but is that what happens. If you look at the current state, we seem to be having

the big crisis.

(Refer Slide Time: 04:51)

So let us look at the international scenario first. There are studies which indicate and Watson

and Li are the two authors whose study I am going to talk to you about. They have surveyed

introductory programming courses in 15 countries and 161 such courses and over several

languages; C, Python, C++, Java, Visual Basic, Fortran and a few others as well and what did

they find?

They found that over all countries over all languages the failure rate was about 30%.

Actually, it was more than 30%, so less than 70% of the students who took the course passed

it. That is really bad news in my opinion and this study is not the only one. There was a

similar study sometime ago with similar findings. It is surprising that those numbers were

also essentially the same.

The Indian scenario is also similar. So there are several surveys but perhaps the most well-

known survey is from aspiringminds.com and they say that many graduates cannot write

simple programs. In fact, they say that even getting a program to compile is somewhat

difficult for our Indian graduates and of course there are other studies which say that many of

our graduates are really unemployable.

So things are not really much better over here. Now if you look at the university failure rates,

they are not so easily available; however, university failure rates and difficulty of papers are

related. So I think the papers that are produced for exams in India often tend to be based on

rote learning or memorization and therefore it is possible that the failure rate is not as high.

On the other hand, the capabilities that we are testing for are certainly much lower.

So I think we should be worried about this situation as much as people outside India as well.

So we really need to step back and think about what is going on.

(Refer Slide Time: 07:30)

The first question that arises perhaps is that is programming so hard? Is it so hard that 30% of

the students have to fail? Well Mark Guzdial is an eminent educationist and here is a quote

from his blog. He says here is a possibility. It that is programming is inherently hard. So what

he is saying is that look there is nothing to be done here, this is a difficult subject and if 30%

of the people are failing that is just an inherent property of the subject.

Now I do not subscribe to this and I would like it if this is false but that is what an eminent

educationist say, so we had been to take notice. You could say that if 30% of the students are

failing maybe we are going too fast. In fact, in the recent conference Luxton-Reilly said that

there is nothing like a hard subject, if something is hard for students, you break it down, you

slow it down and you slow it down until you can produce a fair question paper consistent

with what you are teaching and you get reasonable failure rates.

Again that would be a very strong, very, very game changing decision if we decide it to slow

down our courses. Furthermore, slowing down courses is easy to say but not easy to do

because when you are talking about programming there is a certain body of knowledge that

you want to impart. It is very difficult to break it down, so we may consider that we should

break it down but breaking down will not be completely easy.

We could also ask well are we teaching in the right manner or is there a different way to teach

programming. Now there are many people who have said that actually if you look carefully at

what we do in computer programming classes, we teach very little, well we teach the

language but other than that we do not teach much. I am going to give you an old quote but

there are newer quotes of this kind as well but this old quote is rather eloquent.

And this is due to David Gries who is another stalwart in the field who says but what do we

really teach? We describe the tools the student has at his disposal that is the do-loop, goto,

declarations, etc, give a few examples and then tell him to write programs. Almost no word

on how to begin, how to find ideas, how to structure his thoughts and how to arrive at a well-

structured, well-written readable program.

In fact, in the same paper Gries gives an even more detailed analogy. He says something like

suppose you wanted to teach somebody to make wooden cabinets, suppose you did the

following, suppose you showed him a few tools, maybe a saw, maybe some glue, maybe

whatever tools are needed for making cabinets and you supplied the raw material and then

you showed a few cabinets and then you say look now you know you have the tools, you

know what is to be done, just go ahead and do it.

Gries says that in fact this is the standard of computer science education, computer

programming education when it comes to programming. We teach the language but we really

do not teach how to write programs. This is strong criticism and I am sure many of us will

object but many of us will also agree that there is more than a grain of truth to this. Are we

able to motivate students to study?

Now in this day of social media and cell phones, students are extremely distracted. So we

need to do something to get their attention. There have been some studies and I am going to

go over them a little bit more in detail during the course and they say that graphics and

animation seem to motivate student, motivate children, even children can be motivated to

write programs through the use of graphic set animation.

So perhaps if we feel that our students are not getting motivated and when I say our students I

mean college going students, if they are not being motivated, maybe we should try things like

this. Last but not the least is the question of are our exams fair? Now over time researchers

have used tests for measuring programming competency of students, the kind of passing

numbers, the number of students were passing the course is one kind of data but researchers

have also conducted tests by asking students to write programs.

And if you look at the earlier such tests, they were hard and as time went on the tests that

researchers have been using have become easier and easier and will see those tests as well. So

this raises the issue were our exams fair, some time ago are they now becoming fair, even at

this point are they fair, somebody might say that look the tests that we are using are so easy

now that they are not really measuring anything.

So what is the fair test is a really important question and I think I would suggest that it is not

an easy question to answer because experts seem to be divided, experts seem to be changing

their minds about what is a good test okay. So all this leads us to this course, all this says that

a course in which we discuss how to teach introductory programming is going to be very

useful. So here are the goals of this course.

(Refer Slide Time: 14:19)

First, we will examine how introductory programming courses have been taught over the

years okay. We will examine what the educational literature says are the difficulties. By this I

mean specific aspect is a loop difficult is regression difficult, what is difficult? Then, we will

design the course objectives, we will suggest teaching strategies, we will suggest how to

motivate students and we will suggest how to create fair exams.

(Refer Slide Time: 14:56)

So let me give you a quick overview of the topics in this course. So the first topic is going to

be introduction and survey. Here we will first look at the traditional approaches to

programming education. By this I mean what probably goes on in say 90% of the places in

India and also abroad which is a course using a language like C, C++, Java something like

that maybe Python.

Then, I will also talk about the non-traditional approaches and these might be based on

functional programming for example and then I will talk about some experience with these.

So what are people saying is difficult, what are they saying is easy and then I will try to

extract what are the challenges from all the discussion that we are later will have. Then, I will

go towards presenting and approach which I might call our approach.

And one of the big ideas in this approach is to encourage students to become aware of the

manual algorithms that they already know. You might agree with me that our students that is

first year college students already know a lot of algorithms and I can tell that by getting them

to be aware, it will help us teach them to program and in fact what we are going to say is that

we should be teaching them how they should translate from what they know about manual

computation or they should translate their manual algorithms to computer programs.

And this translation is what we should be teaching them. In addition, we will also teach, we

will also talk about some generic problem solving strategies which I believe we should be

teaching them. In this discussion of the programming language that we will consider for

examples is going to be C++. Most of it will be without object-oriented programming but

some of it we will discuss to what extent we should use object-oriented programing.

Many ideas however will be applicable to all languages. So if you are going to use Java still

many of these ideas will be applicable. Then, I will talk about pedagogical strategies. What I

mean by this is that we already have in mind a certain curriculum that we want to teach which

I will discuss in our second main topic that is what I have written down as basic ideas in our

approach.

Once we have fixed our basic curriculum, we might need to teach things so as to help

motivate students or we might have to teach things which help us in teaching them. So we are

going to use, we are going to teach students some kind of graphics. So graphics is going to be

a teaching aid and it will also serve as a fun element. It will serve as an element which will

keep our students attracted.

However, you will note, you will be pleased to note that it is not going to be all fun. Graphics

is a really, really powerful medium. It allows us to explain many things very nicely. It can be

used to give very challenging project, challenging programs as assignments and also our

projects. So we will have fun but we will have good learning as well. A second idea or second

pedagogical strategy that we are going to be using is a so called repeat statement.

This is not a statement which is already in C++. This is a statement that we have designed

and we have so to say insulted into the language through the use of a preprocessor macro. So

as far as our students are concerned, it will look like a language statement. It will turn out that

the repeat statement is very easy to understand and therefore students can start using repeat

within 5 minutes of starting the course.

Because it is so easy which means that from the first day our students can start writing an

interesting program because repetition is sort of key to anything interesting going on,

otherwise if it is some kind of straight line code that they have to write then it cannot be too

fine or too interesting or it cannot be too powerful. So with the repeat you will see that we

will be able to write quite interesting codes, quite interesting programs, programs which do

interesting things from the very first day.

And we will see when we survey how programing has been taught that simple loops are

actually not that straight forward to understand and what will happen is that because of the

repeat statement we will get a foot in the door as far as understanding loops is concerned and

therefore it will sort of help us actually or it will help the students in coming to grips with the

standard looping statements like while and for and do while.

And finally as far as a pedagogical strategy is concerned, I am a big believer in motivational

examples. If I have to teach something, the motivation has to be extremely clear. If you tell

the student something like look you will not know I cannot tell you why you are going to be

using this or why this is the useful thing.

But believe me use it, believe me learn it, they are not going to feel very motivated to study

whatever you are telling them. So as teachers, it is a really important responsibility for us to

be finding motivational examples and that is going to be stressed a lot. The fourth topic is we

will go and talk about designing medium sized programs. So until this point or until say 75%

of our course the programs we write will be maybe 20 lines at most, 30 lines at most.

By medium sized programs I mean programs which are about 100 lines. So things do change

at that point, you have to be a lot more careful. You have to be little bit more careful in how

you spend your effort. So I will talk about standard libraries, I will talk about objective

related programming, maybe I will talk about dynamic memory allocation. So these are the

topics which are needed for designing medium sized programs.

But of course I realize that every course in every university in India may not talk about this

because they might say that look we only have 25 lectures to devote to introductory

programming and they may have a second course. So I will also discuss what parts of the

course are going to be compulsory sort of the core elements and what you can consider as the

optional elements and which you should do in a second course or which you should do if you

have time and finally I will talk about designing exams.

What types of questions you should ask and how do you estimate the difficulty, what care you

should be taking? As far as estimating difficulty is concerned, there is so called Bloom’s

Taxonomy which says how do you measure, how do you sort of talk about the hardness of a

question. Many of the ideas that I will be discussing have been discussed in a book I wrote

which is cited at the end and it has been tried out in IIT Bombay.

(Refer Slide Time: 23:26)

So a few administrative issues, the grading will consist of a weekly assignment and that will

contribute to 25% of your final score. There will be a final examination, which will

contribute 75%. The reading will come from slides, from the uploaded papers and some

material will refer to the book that I mentioned, the name of the book is an Introduction to

Computer Programming through C++ and it was published by McGraw Hill 4 years ago.

Apoorv Garg who is a research scholar or a Ph. D student in IIT, Bombay is going to be a

teaching assistant for this course and like all NPTEL courses we will be having a discussion

group. So please ask questions, we will attempt to answer them as quickly and in as much

detail as possible.

(Refer Slide Time: 24:19)

So here are the references and you are welcome and you are encouraged to look at the

references and find them on the net.

(Refer Slide Time: 24:27)

If you do not find the reference, I will be happy to upload it or send it to you. Thank you.

That is the end of the first lecture.

