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Algorithms: Structural Graph Coverage Criteria 

 

Hello everyone. In this module our main focus would be to get backs to structural 

coverage criteria on graphs that we saw two modules ago, and look at algorithms that 

will help us to write down the test requirements for each of the coverage criteria we saw. 

And also look at algorithms that will help us to generate test paths that will meet the test 

requirements for these algorithms. 

(Refer Slide Time: 00:37) 

 

So, just to recap the overall module that we are looking at currently; we are now looking 

at designing test cases were software artifacts some modeled as graph. So, in the graph 

models we consider two kinds of coverage criteria: coverage criteria based on the 

structures of the graph which we saw two modules ago. And in the next week we will 

look at coverage criteria on graphs augmented with variables data talking about variables 

and see data flow coverage criteria. 

Moving on from there we will see how various software artifacts can be modeled as 

these graphs, and how these coverage criteria can be used for designing test cases. Now 



what will be the focus of this lecture? We look at algorithms for structural coverage 

criteria in this lecture. 
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So, to recap what was the structural coverage criteria over graphs that we saw what two 

lectures ago. If you remember we saw all these coverage criteria we began with node or 

vertex coverage, then we moved on to edge coverage, we looked at edge-pair coverage, 

and then we looked at path coverage graphs. We began with complete path coverage 

which I told you was infeasible if a graph has a single loop or a self loop, because you 

can go round and round the loop several times and get infinite number of paths. So, this 

no notion of the finite path set that I can completely cover. 

So, a work around would be to do specified path coverage. Specified path coverage is 

very user gifts or the paths. Another interesting path coverage criteria that has existed in 

the testing literature is that are prime paths coverage. These specially help to cover 

graphs with loops by helping us to execute the loop once, execute the loop many times, 

and also to skip the loop. And then prime paths that begin and end with the same node 

what are called round trip coverage. 

So, we ended the structural coverage criteria lecture by looking at two round trip 

coverage criteria. One was complete round trip coverage, which insisted that you cover 

all the round trips. The next one was simple round trip coverage which insisted that you 

cover one of the round trips. 



So, what we will be looking at now is fine we have these coverage criteria each coverage 

criteria has its set of test requirements as per the criteria that is under consideration, and 

then I go as a tester is to be able to define test paths for those coverage criteria. How 

does one go about doing it? So, what are the algorithms that will help us to do this? 
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So, we will saw DFS and BFS, now we will see how to use these algorithms to be able to 

define algorithms for these coverage criteria. When I talk about coverage criteria that I 

discussed in this slide, for each of those coverage criteria we basically saw two entities. 

So, one entity was what is called a test requirement. So, when I say you achieve edge-

pair coverage the test requirement is achieving edge-pair coverage. Corresponding to this 

test requirement I will look at the graph and generate a set of test paths in the graph that 

will achieve this test requirement for edge-pair coverage. 

So, when I talk about coverage criteria, I am talking about two entities that are related to 

the coverage criteria: one is the criteria specified as a test requirement of deviated as TR, 

and the other is the set of test paths which occur a test case that are designed to satisfy 

the criteria. Now it could very well be the case the criteria that I define is infeasible. Like 

I told you right if there is a graph that has a loop and my criteria say do complete path 

coverage it is directly infeasible, because there are an infinite number of paths. So, only 

for feasible coverage criteria as test requirements do we talk about designing test paths as 

test cases for them. For infeasible coverage criteria we do not even consider test paths. 



So, another interesting problem if you step back and ask you could ask yourself- am I 

considering the problem of deciding whether a given coverage criteria is feasible or not? 

Yes this is a very important problem, but that will not be the focus of this course, 

because as I told you it is an undecidable problem to check whether several different 

coverage criteria are feasible or not. And because this course is intended to be an 

application oriented course I really do not want to introduce how you get those 

undecidability results and what are the reduction tools and all that. 

So, what we will focus is; we will assume that the test criteria that we have working with 

are feasible and then we will see how to right test requirements for them, and how to 

design test cases as test paths for them. 
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We will begin with this listing one at a time we look at. So, we begin with node and 

vertex coverage and then we will move on rounds list. So, we begin with node and edge 

coverage. As I told you for each of this coverage criteria two things to look at: what is 

the test requirement or TR and what is the test case that will satisfy those TRs. What are 

test cases? Test cases are test paths in the graph that will satisfy the test requirement. 

Just to recap a test path always has to begin at a designated initial node and end in one of 

the designated final nodes that is one of the requirements that we impose is the part of 

the definition of test paths in this course. So, for node and edge coverage the test 

requirements are already given along with the graph. What is the test requirement for 



node coverage which is basically the set of all nodes of the graphs, the set of all vertices 

of the graph? What is the test requirement for edge coverage which is basically the set up 

of edges of the graph? There is nothing much to do. 

Now, these are the TRs, they are already given to you, we do not need any algorithms to 

list them or define them specifically. Now what about test cases or test paths that will 

satisfy node coverage or edge coverage. If you see for node coverage very simple 

application of breadth first search that we saw about a lecture one lecture ago will 

directly give us node coverage or even depth first search. You take a graph fix a (Refer 

Time: 06:58) node and do BFS or DFS on that node it will result in a breadth first tree or 

a depth first tree of the graph. 

Suppose this tree spans out all the graphs; they are it is the paths of the tree will give you 

the test path is test cases for node coverage. Suppose such the first breadth first search of 

the first DFS does not finish exploring all the vertices of the graph; there are vertices that 

were not reachable from this designated source. Then you fix a new source and start DFS 

or BFS again from that source and you get another tree. So, this way you run DFS or 

BFS on the complete graph till you get forest of trees and the resulting forest of trees will 

give you the set off test paths that will achieve node coverage. 

We can do a very similar thing for edge coverage. I can do a simple modification of the 

BFS algorithm wherein by after running BFS algorithm I checked if I have indeed 

covered all the edges of the graphs. And if I have not covered all the edges of the graph I 

consider the remaining edges which could be cross edges tree edges or back edges and 

see how I can include them in the test paths to be able to obtain test paths that acts as test 

cases for node and edge coverage. 

Just one additional point here it would be useful to begin your search from the designated 

initial node in the graph, because that is where I really a test paths will originate. And if 

you begin your BFS or DFS from the initial node you directly have a test path that will 

end in one of the final nodes. In case the path does not end in one of the final nodes we 

could see how to extend it to the final nodes in case the final node is reachable. So, final 

node is not reachable from the initial node then you have to begin somewhere in another 

fresh source for DFS or BFS. 
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We move on: now the next coverage criteria analyst is what is called edge-pair coverage. 

The test requirement for edge-pair coverage is all paths of length 2. So, here when I say 

all path of length 2 I need to include paths that involve self loops also. How do I compute 

all paths of length 2? I can compute all paths of lengths 2 by exploring the adjacent list 

of a node and its successor and stopping at that. Exploring the adjacency list of one node 

will give me the edges that are adjacent to that node that are incident on that node. And 

exploring the adjacency list of each of these success would get me the address that are 

incident each of these successors. This should give me a path of length 2 and that is what 

is needed for a edge-pair coverage. 

Once I have the TR for edge-pair coverage the test requirements itself could act as a test 

path. We saw an example of a graph there in fact we cannot do better than that, the TR 

itself becomes a test path. Otherwise what I do is I can again run BFS or DFS and get as 

set of test path that will satisfy edge-pair coverage as a test requirement. 
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Now, the next coverage criterion in our list is what is called complete path coverage. As 

I told you complete path coverage is many times not feasible, it is not feasible in graph 

that have loops. And graphs that model software artifacts do have loops typically control 

flow graphs do have loops. So, there is no point and looking at complete path coverage 

because it will be infeasible, should be directly move on and look at prime path 

coverage. 

(Refer Slide Time: 10:22) 

 



So, just to recap what is the prime path prime; path are maximal simple path that is there 

a simple they do not come as sub path of any other simple path. Now, I want to be able 

to do the same old two things for prime path, I want to be able to define TR test 

requirement for prime path, after I finish doing that I want to be able to define test cases 

that will need this test requirement for this prime path. 

To begin with we look at test requirements for prime path and what are the algorithms to 

see that. So, instead of giving you the pseudo code for the algorithm like we did for BFS 

and DFS, what I thought we could do is we could take an example graph and I will work 

you through how the algorithm will run to compute the list of prime path. Once the 

algorithm computes the list of prime paths what I have with me is basically still my test 

requirements. With this list of prime paths as my test requirements I now have to go 

ahead and generate test paths that will cover or satisfy all these prime paths. So, I will 

work you through an example and explain the algorithm by using that example. 
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So, here is a simple graph, here it has seven nodes beginning from 0 and ending at 6; 0 is 

an initial node, 6 is a final nodes as it marks with a double circle. This graph has 

branching, it has branching at node 1, it branches into 5 or 2. This graph also has self 

loop here at node 4 and this graph has a cycle here 1, 2, 3, 1; this is a cycle so it will be 

interesting to look at prime path. As I told you what is a single big use of prime paths? 

Assuming that this cycle represents a loop prime path give you a need coverage criteria 



that will help you to cover this loop, it will help you to skip the loop, it will help you to 

execute the loop and its normal operation. 

So, you can here you can assume there are two loops: oneself loop here and one cycle 

here. So, we will see how to compute prime paths for this graph by as a test requirement 

first and then we will see test cases that will help us to achieve this test requirement. So, 

what are prime paths? Primes paths are maximal simple paths. So, what is this strategy 

that my algorithm will follow is the following. 

So, what it will do is that it will take this graph and it will enumerate all simple paths one 

after the other. So, is there a systematic way of enumerating simple paths? Yes, the 

following the systematic way of enumerating simple paths that we will follow. We will 

enumerate simple paths in order of increasing length; that is we will enumerate simple 

paths of lengths is 0, then will enumerate simple path of length 1 will enumerate simple 

path of length 2 and so on. And then when do we end what is the criteria to end please 

note that we are enumerating simple paths. So, what is the maximum length that a simple 

path in a given graph can have? Because simple path cannot contain cycle if the 

maximum length of path in the given graph can have is the number of vertices. 

So, our algorithm is guaranteed to stop. So, what we do to begin with we enumerate 

simple paths of increasing length, and as and when we enumerate simple paths of 

increasing length we will mark out some of those paths has been prime paths and pull 

them out. As and when we mark and pull them out and finish enumerating all the simple 

paths the final list of mark and pulled out simple paths will be the prime paths that we 

will obtain as a test requirements. 

So, I will show you how that works for this example graph. So, I begin with enumerating 

simple paths of length 0. 
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So, what is a simple path of length 0? Simple path of length 0 is just the vertex, because 

it has one single vertex. How many vertices are there in this graph? There are seven 

vertices starting from 0, 1, 2, 3 and so on up to 6. 

So, I enumerate each of these vertices as a path of length 0. There are seven such paths 

of length 0. I just enumerated them. Another things to be noted is at the end of this 0 

length simple path which contains the single vertex 6 I have put an exclamation mark. 

What is the role of the exclamation mark? The exclamation mark tells us that this path 

this simple path which contains the single vertex 6 cannot be extended anymore as far as 

this graph is concerned. Why is that so? Because 6 is a final vertex and there are no 

edges that are going out of 6. 

So, as far as this graph is concerned simple path 6 cannot be extended anymore. So, I 

remember that by putting an exclamation mark. Now, after enumerating all paths of 

length 0 and go ahead and enumerate paths of length 1. 
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So, here is the same graph and here are the paths of length 1. How have a enumerated 

paths of length 1? I go back to the previous slide, so I say here is a path of length 0 

which begins at vertex 0. So, you go back and look at the graph vertex 0; vertex 0 what 

are the two paths emerging from vertex 0? A path of length 1 from 0 to 4, a path of 

length 1 from 0 to 1; that is what I have written here vertex 0 this path of length 0 can be 

extended to two paths of length 1, namely the edge 0, 1 and the edge 0, 4. 

Similarly, vertex one which was a simple path of length 0 can be extended to two paths 

of length 1 paths 1, 2 and path 1, 5. If we move on vertex 2 can be extended to path 2, 3; 

vertex 3 can be extended to path 3, 1; vertex 4 can be extended to two simple paths of 

length 1 one leading to 6 and 1 using this self loop from 4 to itself and vertex 5 can be 

extended to one simple path of length 1 which is the edge 5, 6. 

Now let us look at what are these exclamation marks that we have put like last slides. So, 

again in this listing of paths of length 1; nine simple paths I have put two paths with 

exclamation mark, which means both the paths end in the final nodes 6 and they cannot 

be extended further. So, exclamation mark for us is to mean that this path cannot be 

extended further. Why am I interested in paths that cannot be extended further? Path that 

cannot be extended further could mean that they are heading towards being a maximal 

simple path. And that is my interest right, maximal simple paths of prime path is what I 

want to look at. 



So, in addition to exclamation mark I have also gone ahead and put an asterisk. What is 

that mean? That means the following; this means that this path which is this edge 4 to 4, 

it cannot be extended further not because there are no outgoing edges, but because it 

already forms a simple cycle. Remember if the only way to extended further is to use this 

edge once again 4, 4 and 4; in which case it will not turn out to be a simple path which is 

not interest to me. And the other way to do it is to do 4, 4 or 6 in which case also it will 

not be a simple path so it is not of interest to me. So, I mark it with a asterisks which says 

that this path also cannot be extended further. 

Now I look at all the other remaining paths which are this list on top, and see how to 

extend them to get simple path of length 2. 
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So, you look at the paths 0, 1; I extend the path 0, 1 into two possible paths of length 2 

path going from 0 to 1 and then from 1 to 2 and path going from 0 to 1 and then from 1 

to 5; that is what is listed here. 

Similarly, the path 0, 4 can be extended to 0, 4, 6. Please note that I can also extend 0, 4 

to 0, 4 and 4, but that is not as simple path so I do not list it here. And I go on doing this 

path 1, 2 can be extended to 1, 2, 3 path 1, 5 can be extended to 1, 5, 6 which comes with 

an exclamation mark because that is where it stops cannot be extended further. Similarly 

path 2, 3 can be extended to 2, 3, 1. 3, 1 can be extended to 3, 1, 2 and 3, 1, 5. So, paths 



of length 2 how many paths are their eight path are there and two of them cannot be 

extended further. 
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Now, I start with paths of length 2 and consider path of length 3. It so happens that I get 

seven different paths. So, path 0, 1, 2 can be extended to 0, 1, 2, 3 path 0, 1, 5 can be 

extended to 0, 1, 5, 6 right path 1, 2, 3 can be extended to 1, 2 there one I can go back 

and so on. 

If you see in this listing almost every paths of length 3 is marked with an exclamation 

mark or an asterisk. In fact, there is exactly one path that is not marked with either of 

this. What do all these mark path mean? They mean that that is it we cannot extend them 

anymore. We cannot extend them anymore for two reasons: one is the end in the vertex 

from which there are no outgoing edges or if we extend them further I violate the criteria 

of they being a simple path. 

So, I am pretty much closed here as for as paths of length 3 are concern there is only one 

path here 2, 3, 1, 5 that is not marked so that is the only path that has go for extension. 

So, I go ahead take that path and extend it by adding the edge 5, 6 you see 2, 3, 1, 5 that 

is a path of length 3 I can extend it to length 4 by adding this edge 5, 6. 
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That is what I have done here. And the moment I did that I am force to put an 

exclamation mark here for the same reason, because I have ended in the node 6 which is 

a final node and it does not have any outgoing edges. 
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So, what do I do, here is the algorithm in English. I consider paths of length 2 by 

extending paths of length 1 with every node that can be reach from the final node in the 

path unless that node is already in the path and is not the first node. And I keep doing 

this for paths of length n increase to path of length n plus 1 till I reach path of length mod 



V. Why do I stop at mod V; because that gives me the maximum length simple paths. 

Any other path of length greater than mod V, but (Refer Time: 21:37) principle one 

vertex as to repeat and the path will not be simple any more. 

So, I hope the algorithm is clear. What is the algorithm do? Starts with paths of length 0 

extends them to obtain paths of length 1, extends them to obtain paths of length 2, 

extends them to obtain paths of length 3, keeps repeating this still it can get paths of 

maximum length which is the length as the number of vertices. While doing this 

extension it marks out certain paths. There are two kinds of marking that we do; we mark 

at with an exclamation mark or we mark with an asterisk. When do we mark with an 

exclamation mark? When I know that that particular path cannot be extended because 

there may not be any outgoing edges; and mark it with an asterisk when I know that if I 

extended I will violate the criteria that this path needs to be a simple path. All the other 

paths are every step that are not marked with one of the special markers can be extended 

and I keep repeating this process. 

So, for this particular graph it so happens that there are 32 simple path for this particular 

graph, but the only eight of them are prime paths. And those are the ones that have been 

obtained by these markings. In general it is not a easy problem to count the number of 

simple path, I have just given this for the specific graph. And why is this algorithm 

guarantee to terminate, because it is to stop when I get a path of length mod V as we 

discussed. 
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So, now I will just present this graph and all the prime paths for the graph. So, this is the 

graph that we be using to understand an algorithm, and here are all the prime paths that I 

worked my algorithm out and I will listed through that. So, let us look at them the path 4, 

4 is this which was listed as a path of length 1 if you remember and write them marked 

as with the star because it could not be extended it was already a simple cycle. Then 

there was a path 0, 4, 6. Then there is a path 0, 1, 2, 3; 0, 1, 5, 6; then 1, 2, 3, 1; and then 

2, 3, 1, 2; 3 1, 2, 3. 

If you see these three paths no 1, 2, 3, 1 they basically corresponded this cycle in the 

graph and between the three paths they tell you various ways in which you could diverse 

this lop. And this path 4, 4 is a prime path that covers this loop. The rest of the paths 

traverse the rest of the graph. Like for the example the path 0, 1, 5, 6 skip this loop, the 

path 0, 4, 6 skips this loop. And then the other path that is left is 2, 3, 1, 5, 6 that is like 

existing this loop 1, 2, 3 and coming out to a final node. 

So, for this graph our algorithm that begins by enumerating simple path of increasing 

length and identifying prime path as and when we enumerate them in by listing all these 

eight paths as prime path in the graph. And if you sort of play them back in the graph 

like we did just now you can see how they neatly cover the two loops and how they skip 

the loop in the graph. 



Now, what have we done? What we have done so far just gives us the test requirement or 

TR for prime path coverage. We say now you write a set of test cases for covering these 

paths. This elaborate exercise that we did was just to obtain the test requirement for 

prime path coverage. We still have to go ahead and design test cases to be able to get text 

path to meet the test requirement for prime path coverage. 
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How do we go ahead and get the test paths for prime path coverage? Again there are 

several algorithms that have been used in literature. I will give you one algorithm that are 

illustrate on the same example because that turns out to list the prime paths it is a 

heuristic that lists is reasonably faster than other non algorithms. So, what we do is in 

this list of prime path which are given as my test requirement you start with the longest 

path. Which is the longest path in this list? That is the last path 2, 3, 1, 5, 6. What you do 

is that this you extend this path to the left to see if you can find a path from the initial 

node to the beginning node of this path. And then from the right assuming that this is not 

a final node you see if you can extend it to the right to make it end in a final node. 

In this case 6 is already a final node, so I have already ended in the final node, but 2 is 

not an initial node. So, I take the longest prime path and see if I can go to the left and 

extend this path to make it as if it was beginning from an initial node. So, if I do that for 

2, 3, 1, 5, 6 I get such a path; I get 0, 1, 2, 3, 1, 2, 3, 1, 5, 6. So, I will trace it out here 0, 

1, 2, 3 right; 1, 2, 3, 1, 5, 6. Now you might ask why did I repeat this 1, 2, 3 twice; I 



repeat that with the purpose of I could have not done that, I could have done 0, 1, 2, 3 1, 

5, 6 in which case I would not have covered these paths here. If you remember I had 

three prime paths which tell you how to traverse the loop beginning from three different 

vertices of the loop. I could begin the loop at 1, I could begin the loop at 2, I could begin 

the loop at 2; then you basically going round the loop once, but the vertices in which 

they were beginning where different. So, that I want to be able to cover all of them here 

so that is the reason why I repeat this loop here. 

Please note that this is a test path, so that need not satisfy the notion of a simple path or a 

prime path, because if just an ordinary test path. The only condition that it has to satisfy 

is it has to begin it an initial node which is 0 for our example and ended it a final node 

which is 6 for a example. In between nodes can be repeated, because it is not a test 

requirement for prime path coverage it is only a test path for prime path coverage. So, 

test paths need not be simple cycles, they need not be maximal simple paths. So, if I do 

that then right there I have toward four prime paths in this list: I have done this, I have 

done this loop, so I have done I entered the loop from the initial state and I have gone 

through the loop. 

So, what I do is the remaining; what is the remaining amongst the remaining prime path 

which is the longest prime path that is left out that is this 0, 1, 5, 6. It so happens that that 

already begins in an initial node and ends in final node. So, does have to be extended 

anymore, so I leave it. What is the other path that is left out? Those are these two. In this 

path 0, 4, 6 again begins in the initial nodes and end in the final node, but I need to be 

able to give scope to cover this loop so extended it to 0, 4, 4, 6. 
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So, putting it all together the complete set of test paths for prime path coverage as my 

test requirement are this list that I obtain. If you remember I took this which is the 

longest prime path I extended it to cover the loop over the vertices 1, 2 and 3, then I took 

the path that skip the loop, then there was one more loop which these two test paths 

cover. If you notice and if you worry about is this the best set of test paths that I can get 

for prime path coverage for this graph I would say no. Why because, if you see the 

simple reason the 0, 1, 2, 3, 1, 5, 6 is completely embedded within this second path, so I 

could remove one of them. So, I am not got the least number of test path that I could 

cover. 

Similarly 0, 4, 6 is completely embedded in 0, 4, 4, 6, so I could remove 0, 4, 6, but that 

is alright. The focus for us is not to get the most optimal set off test paths, the focus for 

us is to be able to correctly defined the test requirement and get a set of test path that 

satisfy the test requirements; that is what we have done here. 
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In general the problem of what is optimality, optimal test path corresponding to a test 

requirement. There are several notions of optimality available in the literature. We will 

not really focus on that because I want to be able to move on, but I point you to good 

references were you could look up for this kind of information. In general many 

algorithms that come up with optimal test paths, or decide what is an optimal notion and 

typically intractable problems and lot of them are NP-complete problem. 
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In fact, what we saw was explicit state algorithms- algorithms that use breath for search 

or depth for search you could leave them aside and do what is called symbolic execution 

based algorithms. I will do symbolic execution a little later in the course after a few 

weeks; they also can be used to obtain specified path coverage criteria. 
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I would like to end this module by encouraging you to use these web apps. So, the text 

book that have been using for this course is the book by a (Refer Time: 31:23) software 

testing in the web page of the text book they have a very nice web app for several 

different coverage criteria that they introduce in the textbook. For now you begin by 

using this particular web app the app that is available in this URL. You can try out how 

the various structural coverage criteria work by input in your own graph. And then they 

have algorithms which are basically Java programs they have written with will output the 

test requirement and the test paths that satisfy the test requirement. 

If you want go ahead and read further on this paper is a very good reference to talk about 

prime path coverage, which is the most difficult structural coverage criteria that we saw 

till now. 

Thank you. 


