
Software Testing 

Prof. Meenakshi D’Souza 

Department of Computer Science and Engineering 

International Institute of Information Technology, Bangalore 

 

Lecture - 08 

Elementary Graph Algorithms 

 

Hello again. The goal of todays lecture is to be able to do depth first search algorithm 

which is another popular graph algorithm followed by strongly connected components 

how to use depth first search to output what are called strongly connected components in 

a graph. 

(Refer Slide Time: 00:30) 

 

So, we will begin with depth first search. Unlike breadth first search that we saw in the 

last module, depth first search is also meant to traverse or explore the vertices of the 

graph, but in a depth first way right. So, it goes deep down a graph as much as possible. 

It begins at a particular designated source like BFS and then instead of exploring the 

adjacency list of that source fully it takes one successor from that source goes to that 

successor, then it picks up one successor of the successor goes to that successor and so 

on. So, it goes deeper in the graph and first finishes exploring the graph to the deepest 

possible path that it can trace from the source. 

Then it backtracks comes back and picks up the next vertex in the adjacency list of the 

source, and goes deep down that vertex. And when it finishes going down for that vertex 



comes back because the next adjacency vertex adjacent to s goes deep down and when it 

finishes exploring the adjacency list of each vertex deep down it finally, comes back and 

colors s black right. So, the goal of depth first search is also to traverse a graph and 

produce a tree, but unlike depth first search it goes deeper down in the traversal the 

breadth first search grows breadth first in the traversal. 

(Refer Slide Time: 01:57) 

 

Like BFS, DFS also keeps several attributes it keeps the pi predecessor attribute 

associated with each vertex, it keeps a color associated with each vertex it keeps 2 kinds 

of time stamps unlike breadth first search I will tell you what they are very soon, but 

what is a pi attribute look like. Pi attribute basically is useful to produce or output the 

depth first tree right, set of depth first tree from different sources we will constituted 

depth first forest and the edges in this tree are called tree edges. So, as and when I 

explore the graph deep wise, I said the pi attribute of each vertex that I encounter to be it 

is parent, and when I consider all the pi attributes this way I get the full predecessor sub 

graph which happens to be a tree or a forest of trees based on whether the graph has one 

connected component reachable the source several connected components reachable 

from the source. 



(Refer Slide Time: 02:54) 

 

So, like BFS, DFS also goes ahead at first discovers a vertex and then it also finishes the 

vertex. Now what we do is unlike DFS we keep 2 different kinds of time stamps here, 

but time stamp call dot d which is given when a vertex is first discovered and which 

means a vertex which was originally colored white now becomes colored grey, and then 

another time stamp called dot f, f for finish time stamp which is given when the vertex is 

colored black right. When the adjacency list that vertex is fully examined. So obviously, 

a vertex first needs to be discovered before it is adjacency lists is fully explode at the 

vertex is finished. 

So, the d timestamp that is given to a vertex is always strictly less than the f timestamp 

that is given to the vertex. And the d and the f timestamps cannot be more than the 

number of vertices in the graphs, because that that many paths could be there assuming 

that the whole graph is connected one for d timestamp and one for f timestamp. So, they 

are basically values between 1 and 2 mode v right. So, before it is given the d timestamp 

the color of a vertex is white. Between when it is given the d timestamp and the f 

timestamp, it is color is grey and when it is colored black we give the finish timestamp to 

a vertex. So, here is how the algorithm looks like. I have split this algorithm across 2 

slides because I could not fit in to one slide. 



(Refer Slide Time: 04:24) 

 

So, this is the initialization part as done for breadth first search. You start for every 

vertex you color at white you set it is pi attribute to nil right. If you remember in the BFS 

code, we had set it is distance attribute from s to 0. Here we do not do the distance 

attribute we do the discovery and finish time stamps. For that I need a generic variable 

called time which I will use to set the dot d and the dot f timestamp. So, I initialize the 

generic variable time here to be 0 right. So, after I have done this, what I do is for every 

white color vertex in the graph I begin this procedure called DFS visit from that vertex. 

What is the procedure DFS visit to? DFS visit first thing it does is increments the 

timestamp because it is beginning to search from a new vertex and it says this new vertex 

from where I am beginning my research which is the vertex u is discovered now. 



(Refer Slide Time: 05:17) 

 

So, it sets the timestamp that it is just incremented as the discovery timestamp for the 

vertex u, and because I am going to begin exploring from the vertex u which was white I 

set the color attribute of u to be grey. Now I start exploring the adjacency list of u. So, if 

there is a white colored vertex in the adjacency list u, I have to color that vertex grey and 

then start exploring deep down that vertex v right. So, I pick up the white colored vertex 

call it v that is present in the adjacency list of u, and then the first thing that I do is I say 

u is the predecessor of v in my depth first tree. You may because I found v as I was 

exploring u. Now I have to go down and deeply explode the path that come out of v 

right. So, at v I recursively call the same procedure DFS visit right. So, assuming that 

this code gets instantiated here, what would you do, you increment the timestamp you 

say that the vertex v is discovered, set its timestamp, set color of v to gray and go inside 

the adjacency list of v. 

If you find and other white vertex their you call the same procedure again for that vertex 

in the adjacency list. So, this way DFS let us you go down the path corresponding to a 

particular vertex right. And when you finish exploring all the paths deep down from a 

particular vertex u, which means you finished exploring this recursive call when you 

come out of this recursive call for every vertex in the adjacency list of u, then you say I 

have finished exploring the adjacency list of u fully, then you color u black increment the 

time right time variable that you kept as a global variable, at say that u is finished 



because it is colored black and set is finished timestamp to be the current value of time 

right. 

(Refer Slide Time: 07:39) 

 

So, we will see an example to make it clear. What I have done this I have squeezed in the 

graph all in one slide. I hope you can read this which is not what I did for breadth for 

search here I have squeeze the whole thing into one slide to make it better 

understandable. 

So, here is this graph you look at the top left corner that is the given graph. How many 

vertices does it have? It has 6 vertices u v w x y and z right. Unlike breadth for search 

here just for illustrative purposes, I have followed CLRS and taken an example which is 

a directed graph. This is the example from the same book by CLRS. So, what I do is u is 

the source from where I begin my depth first search, now if you look at this graph a bit 

before you start doing depth first search of the graph, you realize that the vertices v x and 

y are reachable from u, but the vertices w and z are not reachable from u. If you notice 

there is no path no edge that connects either of these vertices to w and to z. So, when I 

explore starting from u, I will be able to explore only these 4 vertices. And then I have to 

start my DFS search again fresh from w to be able to explore the remaining towards w 

and z. And what will be the output of the algorithm, it will be a forest containing 2 trees. 

One with u as the root or the source of exploration, and one with w as the source of the 

root of the next depth first tree. 



So, will begin with u, what is this label inside u? Read it has one slash nothing. So, there 

are 2 parts to a label there is a numerate apart thing of this label as a number having like 

a fraction having a numerator and the denominator. The numerator part, the part on the 

top the left side of the fraction indicates the discovery time the dot d time of a vertex, the 

denominator part indicates the finish time or the dot f time the vertex. Right now to begin 

with because I am exploring DFS from u as the source vertex, I say discovery time of u 

is one, because I am exploring not yet finished exploring the adjacency list of u fully. So, 

no finish time is assigned to u. So, the right hand side of the bottom part which contains 

the finish time is left black. Now I explore the adjacency list of u as per what this pseudo 

call says how many vertices are there if you see in this graph there is a v in the adjacency 

list of u there is x in the adjacency list of u I can choose either of them this particular 

example let say be go to v. 

So, v which was originally colored white now becomes grey color. Again I have not 

depicted like in BFS I am not depicted the color of the vertices here, the grey color is not 

when depicted just the black color is when depicted for clarity sake. So, I have 

discovered v, my timestamp is got incremented to do. So, I have sign discovery 

timestamp of v to 2 and then I say this shade of this arrow indicates that in the depth first 

tree u is the predecessor of v. The pi attribute assign to v assigns the value as u. Now 

what do I do? I have to recursively call the procedure DFS visit from the vertex b which 

means I have to explore the adjacency list of the vertex v this in this example it just. So, 

happens that there is only one vertex adjacent to v in the adjacency list which happens to 

be y. 

So, I say I go their y has been discovered I assign it is discovery timestamp to be 3, and 

then I said the predecessor y to be v in the DFS tree. Now I start exploring recursively 

the adjacency list of y right. If you notice, I am going deeper in the graph right. I did not 

bother after doing v to come to x, because I am not doing breadth first search after doing 

v I went to it is successor y because I am doing depth first search. Now I explore the 

adjacency list of y, what is there in the adjacency list of y in this example it is just x. So, 

I discover x assign it is discovery timestamp to be 4, and set y as the predecessor of x by 

putting the shade. So, so far the depth first tree that I have generated looks like this, it has 

these 4 vertices u v y and x and the edges of the tree are these grey shadow edges right 

now I repeat the procedure I have to look at the adjacency list of x, if you look at the 



adjacency list of x what is the only vertex that is present in the adjacency list of x that is 

v. 

But remember v is already being discovered. So, v is not colored white right. So, I do not 

go back and read discover v right. So, I let it be there is no other vertex of the adjacency 

list of this vertex x. So, which means I have finished my exploring my vertex my search 

from the vertex x. So, I assign a finish stamp of 5 which is one more than the discovery 

stamp of 4, and then I color x black right. I move on I repeat this and then I say I have 

come back to the same thing whatever was holding for x holds for y there is no more to 

explore. So, I finish y color it black assign a finished time. And then I move back to v 

same thing I finish v color it black assigned a finished time move back to u finish u color 

it black assigned a finish time. No more to explore at this stage if you look at this graph 

that is labeled with j, I finished exploring the full thing the remaining 2 vertices were not 

reachable from my source u those 2 vertices by w and x. 

So, I start fresh ones more depth first search from the vertex w the last finish timestamp I 

had was 8. So, assigned for discovery timestamp of 9 to w, start and repeat the same 

exploration from w, in this case I finish first enough through all these edges because 

there are only 2 vertices that nothing more to it, and this path again leads to all already 

black color vertex. So, I repeat the same procedure for w and get this. So, the final output 

of my DFS algorithm we will 2 depths first trees. One that has it is a route at u and has 

all these vertices the grey colored entity is the trees that you draw out, and the next depth 

first tree in the forest has it is route as w and I just have these 2 vertices and one edge. 

So, this is how DFS works. 



(Refer Slide Time: 14:22) 

 

What is the running time of DFS? Let us go back and look at the code this for loop which 

does the initialization takes what v time, and then the procedure DFS visit how many 

times does it run? It runs at most once for every vertex that is reachable through an edge 

in the graph from the source right. So, the initial think takes order v time. DFS visit is 

called exactly once for each vertex it does not call a vertex that is already color black. 

So, the loop in DFS visit if you see there is one more loop here this loop in this recursive 

procedure DFS visit, runs at most this time right at most the cardinality of the adjacency 

list of a particular vertex some of all the adjacency list is no more than the number of 

adjust as we saw. So, the total running time of depth first search is also v plus e. So, 

depth first search also runs in time linear in the size of the graph. So, pretty much it is the 

same as breadth first search they have no difference except in terms of the convenience 

of what you want to use. I would ideally say that if you are not sure about what is the 

kind of graph it is you go for breadth first search because it is a say for way to explore. If 

we go for depth for search you might entire a loop in a graph that corresponds to the 

control flow graph and the loop could be infinite and you may not be able to come out of 

the loop. 

So, breadth first search is slightly better to explore a graph when you are not sure about 

the kind of graph that you are looking at. So, towards showing correctness of depth first 

search again I will not be able to spend time proving the correctness of this algorithm 



what I will do is walk you through the results that finally, show that depth first search is 

correct. 

(Refer Slide Time: 16:02) 

 

So, what is the main correctness result that I want to show about depth first search that is 

this. So, when I take a graph and run depth first search on the graph then depth first 

search explores the graph and it produces a forest of depth first trees containing 3 edges 

or back edges. 

(Refer Slide Time: 16:22) 

 



So, towards that I have all these theorems. So, this parenthesis theorem basically says 

that the discovery and finish times of all the vertices are improper integrals. If you see 

this example right I continuously increase I first discovered this time is one I next 

discover this timestamp is 2 then I next discovered this time stamps are 3, and when I 

finish your timestamp is 5 right. And if you see if I go back and finish the vertex u it is 

timestamp is 8 which is greater than the timestamp 5. 

So, this lemma says that v is a proper descendant of a vertex u in the depth first forest 

then the timestamp that is assigned the discovery use assigned discovery timestamp first 

and then it is successor descendant v is discovered - u is finished and then v is finished 

right. 

(Refer Slide Time: 17:17) 

 

So, there are 4 kinds of edges that depth first search returns. One is what is called tree 

edges the edges that belong to one of the depth first tress. The next kind is what is called 

back, edges that connect back that connect a descendant back to it is ancestor what are 

called back edges. Forward edges an edges that follow the same direction as that of tree 

edges, but they sort of cut across several descendants and directly connect and ancestor 

to a descendant. 

All other kinds of edges what are called cross edges. Right if you go back and take this 

example this is the final output right look at the last graph that my curser is in the final 

depth first tree is looking at it here. So, that edges that colored grey what are called tree 



edges right. This edge from u to x marked f is a forward edge because it connects u to 

one of it is descendants x. This edge from x to v marked v is what is called a back edge 

because it connects descendant back to one of it is ancestors. Similarly, this self-loop is 

also a back edge and this kind of an edge which is not a forward edge not a tree edge not 

a back edge is what is called a cross edge right. There should be a first categorizes edges 

into 4 parts right. 

(Refer Slide Time: 18:51) 

 

Now, the other thing that I wanted to do is to tell you how to use DFS to output what are 

called strongly connected components in a graph. 

So, you need a directed graph to have strongly connected components and if you have an 

undirected graph u output what are called connected components. So, what is strongly 

connected component, a strongly connected component is a sort of a cycle in a directed 

graph. So, it says a subset of vertices is a strongly connected component if every pair of 

vertices u comma v in that component u is reachable from v and v is reachable from u. 

So, if you go back and look at this graph that we had in the slide here, if you see this 

graph this is a strongly connected component, v y x they all 3 of them are reachable from 

each other through this cycle that my and tracing out not through the cursor. Similarly, 

just this is z is another strongly connected component single vertex strongly connected 

component if you see w cannot belong to this strongly connected component because w 

can be y can be reached from w, but not vice versa. 



So, this graph has to strongly connected components one that has this triangle and one 

that has this self-loop right. So, I want to be able to know how to use DFS to be able to 

output the strongly connected components in the graph because I will use them to be able 

to look at prime paths in other entities for test case generation. So, to do that I look at the 

graph and I also look at its transpose. What is a transpose of a graph? You take the same 

graph and you reverse the directions of the edges assuming that it is a directed graph? So, 

a transpose of this graph in this example would be the same graph in terms of the 

vertices, but every edge will be presented with it is direction reversed right. So, I look at 

the transpose at the graph one thing to note is that G the graph and its transpose have the 

same strongly connected component right. Because if one vertex was reachable from the 

other in the original graph then the same property would hold in the reversed graph. So, I 

just go in the reversed way. 

They were reachable from each other in both directions right. So, to be able to output the 

strongly connected components is standard technique to do is to be able to run DFS. 

(Refer Slide Time: 21:02) 

 

Once on the graph take it is transpose and run DFS once on the transpose, but in the 

reverse direction of the finish times right. So, that is what this pseudo code does. You 

first run DFS compute finish times for each vertex u right. So, that you give you a forest 

of DFS trees. Then you compute the transpose of the given graph. Now you run DFS on 

the transpose, but in the main loop of the DFS algorithm you consider vertices in the 



order of decreasing finished time. So, what it is intuitively saying is if you go back to this 

example after running DFS on this graph I get something like this right. Now what I do 

is I take the same graph take it is transpose. So, I reverse the direction of every edge. 

So, I get the sort of a reversed graph. So, I run DFS once again, but in the reverse 

direction from the highest finished time vertex. So, in some sense this tree would have 

traced this, if I take this strongly connected component what I am trying to do is I am 

trying to traverse one half of the strongly connected component through one DFS and I 

am trying to traverse the other part of the strongly connected component by running DFS 

once again on the transpose that is what this code is trying to do. So, how do you find 

strongly connected components? You run DFS on the given graph, record the finished 

times take the transpose of the graph, run DFS again on the transpose graph, but in 

decreasing order of the finish times that you recorded in step number one .and then what 

you do is that you output each vertex because you would have gone through it once this 

way once that way both the ways is the strongly connected components. So, each DFS 

tree in the DFS forest would be a separate strongly connected component that you can 

output right. 

(Refer Slide Time: 22:51) 

 

So, these are lemmas that tell you that the algorithm for running DFS is basically correct. 

So, what they tell you is that you take the given graph, take all its strongly connected 

components. Let say it has k is strongly connected components. You collapse each 



strongly connected component to create a meta vertex right. So, in this example if I see, I 

told you right this is one strongly connected component, this is one strongly connected 

component these 2 standalone separate strongly connected components single vertex 

they want have any significant, but they are like that. So, what I do is I take this and I 

collapse and create one vertex with this one vertex for this entire strongly connected 

component one vertex for this and one vertex for this. So, I have 4 vertices. These edges 

get absorbed these edges that connect these meta connected strongly connected 

components get retained the component graph. 

So, that is how I create the component graph. So, as say vertex is are the set of vertices 

for each strongly connected components there is one meta vertex. And I say if that is an 

edge that connects one strongly connected component to the other, then you put an edge 

in the new graph right. This one says that if there are 2 distinct strongly connected 

components in the given graph, and I take vertex path from one strongly connected 

component in the meta graph to the other strongly connected component in meta graph 

then, they cannot be a path in the reverse direction. Basically what it says this component 

graph corresponding to a given graph where I collapse this strongly connected 

components into a single vertex is a cyclic graph right. 

(Refer Slide Time: 24:37) 

 

So, using the fact that it is a cyclic graph now what I relate is I relate the discovery and 

finish times right. So, what I do is in this particular lemma one thing to be noted is that 



when I talk about discovery and finish times I discuss I talk about the times that were 

recorded by the first DFS that runs in this algorithm, where the first DFS not there is 

second right. So, for an entire component I says discovery time is the least of discovery 

times of all the vertices u for an entire components finish time is the highest of the finish 

times of all the vertices. So, what I do is suppose I have distinct strongly connected 

component c and c prime, then if there is an edge in the direction u to v where u is an c 

and v is the c prime then, I say that c would have been finished c prime would have been 

finished before c right. 

So, corollary is the reverse. So, it says that if c and c prime are distinct strongly 

connected components in a given graph, and suppose there is an edge from u to v in the 

transpose graph then the reverse of that wholes right. So, what it basically says is that if I 

run DFS once here and if I run DFS once in the transpose, but taking it in the decreasing 

order of finished times, then I will be able to distinctly identify strongly connected 

components individually in this graph why does that hold true that holds true. Because if 

I compose the meta graph considered the meta graph where I compose and collapse each 

strongly connected component into one vertex then an meta graph is a cyclic, so if I run 

DFS on that a cyclic graph I would have correctly done both base DFS right. 

So, the algorithms were strongly connected components that we saw here is basically 

correct. So, to summarize what I wanted to recap through these 2 modules was to teach 

you basic graph there was an algorithms depth first search breadth first search and they 

have several different applications strongly connected components is one application. 

Similarly, you can do topological sort elementary graph such algorithms where you keep 

extra parameters extra tax can all be done using basic manipulations of breadth first 

search and depth forts search, and both these algorithms have linear run in time. What we 

will do in the next module is to see how to use this algorithm to be able to define 

algorithms for test requirements and test path generations to satisfy the test requirements. 

Thank you. 


