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Hello everyone. Welcome to the next module. In this module what I would like to spend 

some time on is relating to elementary graph algorithms. The last module we saw 

structure in coverage criteria related to graphs, we saw how to rectify test requirements 

for various structural coverage criteria; we began with note coverage, h coverage went 

on till we saw prime path coverage  

The next thing that I would like to focus on as far as testing is concerned is how to define 

algorithms that will help us to write test requirements and test paths that we achieve 

various graph coverage criteria. It so turns out the algorithms that will help us to write 

test paths and test requirements for graph coverage criteria use elementary graph search 

algorithms; most of them use in fact BFS- breadth for search. Some of them can also use 

things like finding strongly correcting components, finding connected components 

etcetera. So, once you know these algorithms very well it is a breeze to be able to work 

with algorithms that deals with structural coverage criteria and graphs. 

So, what I am trying to spend time on in this module and in the next module is to help 

you to revise elementary graph search algorithms. We will look at breadth search first 

search in this module, in the next module we will recap depth for search and also look at 

algorithms based on DFS that will help us to output strongly connected components. 

Once you know these algorithms you will move on come back and look at the algorithms 

to write test requirements in test paths for structural coverage criteria based on BFS and 

DFS. 
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Let us begin looking at what are the standard representations of graphs that algorithms 

that manipulate graphs will look. Like graphs can be represented in two standard ways as 

you might know; as an adjacency lists and adjacency matrix. Both undirected and 

directed graphs can be represented both as an adjacency lists and as adjacency matrix. It 

so turns out that in testing when we look at graphs as data structures modeling various 

software artifacts, we will never look at undirected graphs they are not very useful to us 

maybe except rarely when we look at let us say class graph or things like that otherwise 

most of the graphs that we will deal with will be directed graphs. 

But why I am saying this that the algorithms that we will look in this module and next 

module work both well from directed graphs and for undirected graphs we will use then 

for directed graphs. So, we will go ahead and see what an adjacency lists looks like. 
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So, given a graph with vertex at V and at set E, what is an adjacency lists. An adjacency 

lists keep an array of lists. How many lists are there in the array? There is one list for 

every vertex, so totally there are mod V lists. What do each of this lists contain each of 

this lists contain all the vertices that are adjacent to the given vertex v; that is it contains 

each vertex u such that u v is an adjunct in the graph. So, what does and adjacency lists 

contain? It contains an array of mod V list one list for every vertex where the list for 

every vertex contains all the other vertices that are connected to this vertex through an 

edge.  

What is the size of an adjacency lists? If you see for directed graphs the directions of the 

edge do not matter right. So, when I have an edge u v I practically have two edges u v 

and v u. So, for undirected graphs the size of the adjacency lists is two times model: one 

edge two edges for every edge present in the graph in the adjacency list. And for directed 

graphs there is one for every edge there is one vertex somewhere in the adjacency list of 

some vertex, so the size of adjacency list is mod E. 

So, for both directed and undirected graphs this total size of the adjacency list will be 

this. This first mod V in the theta component represents the number of lists and each list 

can be at most mod E size. So, the total size is theta of mod V plus mod E. 
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Moving on what is an adjacency matrix representation of a graph look like? Adjacency 

matrix of a graph is a mod V by mod V matrix. So, it has as many entries is that of 

number of vertices, it is a square matrix, and its filled with 0 and 1 entries; it contains a 1 

at vertex V i and V j if the edge V i V j is in the certain edges of the graph otherwise it 

contains a 0. So, if you see adjacency matrix will go directed and undirected graphs will 

need V square theta V square memory, because they are of matrices of size mod V by 

mod V. In addition for undirected graph because the edges are there on both sides the 

adjacent transpose of its adjacency matrix will be same as the given adjacency matrix. 

So, which is good for what kind of graphs? Graphs could be dense or they could be 

sparse. If a graph sparse means it has very few edges; it has lot of vertices which has 

very few edges. Trees are examples of graph that has sparse. So, graphs are sparse then 

adjacency list is considered to be a good representation, because the size of each list for 

every vertex will be small. On the other hand if a graph is dense, which means it has lot 

of edges the number of edges is close to mod V square. Then an adjacency matrix is 

considered good, because the size of the adjacency matrix is fixed to be V by V matrix. 

So, if there are many edges it is just means more one entry lesser 0 entries, whereas if it 

is an adjacency list for a dense graph then the size of the each list would be really long. 

So, for sparse graph adjacency lists are considered to be good, for dense graph adjacency 

matrices are considered to be good; otherwise there is no really big trade of about one 



representation or the other it is just for the convenience of our this thing. In our 

algorithms we will mainly use adjacency lists. The algorithms that we will deal with in 

this two modules we will use adjacency lists. 
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So, what are the elementary graphs such algorithms that we will be looking at? We look 

at three algorithms, because these three are the main ones that we will need for test case 

generation. So, we will look at breadth first search which we will do in this module. The 

next module I will help you recap depth first search and we will also depth first search 

and breadth for search have several applications. So, we look at one particular algorithm 

which deals with how to compute strongly connected components or connected 

components using depth first search. So, those two we will look at it in the next lecture. 
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So, we will move on and start with breadth first search. What is breadth first search do? 

As the name says it searches through a graph, and how does it search through a graph? It 

searches through a graph in a breadth first way. That is it starts it searches from a 

particular vertex, let us say call it source vertex and what does is that it first explores the 

adjacency list of the source vertex; that is it explores the span of the breadth of the graph 

at the vertex x. Once it finish exploring the adjacency list of the vertex s which is the 

source what is it mean to explore it adds it to a particular queue that it gives it goes ahead 

takes a one vertex at a time and explores that vertex adjacency lists and it goes on like 

this. 

So, this way of searching or traversing through a graph by exploring the adjacency list of 

each vertex fully is called breadth first search, because it explores the graph in a breadth 

first way; does not go deep unlike depth first search. As it explores it also computes a 

few things which are useful for us to keep. What it says is as it explores it also keeps 

track of given a fixed source s what is the distance of any other vertex in the graph from 

the source s. 

If we look at the graphs that do not have any attributes like weights rather things attached 

to its edges. So, for us distinct plainly means the number of edges. So, how far is the 

particular vertex in the graph from the designated source vertex? How far mean how 



many edges are there between the particular vertex and graph that is reachable from the 

source vertex; that is what is called the distance of a vertex from its source. 

Breadth search first also computes the distance. It so happens breadth first search 

computes this smallest distance or the shortest distance we will see what is that in a 

meanwhile. And it once you explore a graph by using breadth first search then the result 

of that exploration is a tree containing the path from the source to call other vertices that 

are reachable from the source. Such a tree is called breadth first tree. Breadth first search 

algorithm can be used to output the shortest distance of every vertex from the source. It 

can also be used to output the breadth first tree which contains the shortest path from the 

source to every other vertex. 
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So, here is how the algorithm looks like; before I show you the pseudo code of the 

algorithm I will tell you what it does. 
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So, it takes the graph and the main job that breadth first search does is to be able to cover 

each vertex in the graph; keeps the queue of vertices and that queue contains the queue 

of vertices that are colored grey. So, what is breadth first search do? It keep it color 

codes every vertex and there are three kinds of colors that it keeps. To start with every 

vertex is colored white. And then vertex that is colored white further changes to color 

grey and after its colored grey it changes to color black. 

Once it changes to color black we say we are done with exploring that vertex fully. So, to 

start with all vertices of white, and when does the white vertex become grey? It becomes 

grey when it enters the breadth first search maintains a queue of vertices and when it 

enters queue it becomes grey. So, it becomes grey when it is first discovered as a part of 

the adjacency list of some vertex. And then it is put into the queue. 

When it is put into the queue the aim is grey colored it is discovered now, but I am yet 

explore this vertices adjacency list. So, I have put it into queue to remember that I have 

to do that. And I move on and explore the adjacency list of all other siblings of this 

particular vertex. And then when I come back and explore this particular vertices 

adjacency list and finish exploring that then I color it black, and when I color it black I 

will move it form the queue. 

So, how does the breadth first search work? So, here is what if the pseudo code for the 

breadth first search. So for each vertex that is not the source remembers s is the source 



for which breadth first search algorithm start. So, for each vertex (Refer Time: 11:26) G 

dot V s for each vertex in the graph that is not the source which is not s set its color. So, 

we keep three attributes with each vertex; we keep a color attribute which tells you what 

the color of the vertex is: it could be white, grey or black. We keep a d attribute d for 

distance which tells you what is the distance in terms of the number of edges of this 

vertex from the source vertex s. And we keep a pi attribute: pi representing predecessor 

of parent which tells you who is the parent of a particular vertex in the breadth first tree 

that is algorithm is going to output. 

So, what are the three attributes that we keep with every vertex? A color attribute, a 

distance attribute which tells its distance in terms of a number of edges from the source, 

and a predecessor or a pi attribute which tells you who is the predecessor of this 

particular vertex in the breadth first tree. 

So, to start with breadth first search algorithm colors each vertex white such its distance 

to be infinity, because we the distance will reduce right to start with I do not know how 

far it is from the source. And if the tree is not yet developed so the breadth first search 

algorithm is just began, so its pi attribute is NIL. Now it begins its search from the source 

vertex s. So, the first thing that gets into the Q; Q is the Q (Refer Time: 12:52) it 

maintains. The first vertex that gets into the Q is s. So, if you see this enqueue Q s puts s 

inside the Q Q. So, when puts inside the s Q the color of the vertex s is grey; s the 

distance from s itself is 0 s is its own parent so it does not have predecessor its 

predecessor is set to NIL. So, Q is initialized and s is put into the Q. 

So, as long as there are vertices in the Q which means as long as there are grey color in 

the vertices what do you do: you pick up the first vertex available from the Q you 

dequeue it right and you start exploring adjacency list that is what this one for (Refer 

Time: 13:29) line number a does. So, it says for each other vertex in the adjacency list of 

the vertex u in the graph. If its color is white then you make it grey which means you 

have discovered that vertex. Now you set its distance from the source s to be whatever in 

the distance from the source s of u was plus 1. And then you say its parent in the breadth 

first search tree is going to be u, because I found it as the part of the adjacency list of u 

so it is natural that its parent is u. 



Once you do this you add V to the Q that you get here. And you keep doing this, keep 

doing this, till you finish exploring the adjacency list of u. Once you fully finish 

exploring the adjacency list of u you come out and color u as black. So is it clear what 

the algorithm does; this is to quickly repeat. To start with the color each vertex white sets 

the distance and bi attributes, it begins its search at the source vertex s, add this to the Q 

color with grey, sets it g and pi attributes, and then for each vertex in the Q it takes it out 

from the Q explores the adjacency list of the vertex that was just taken out fully. 

What does it means to explore the adjacency list of the vertex. It looks at each vertex in 

the adjacency list of the vertex u, if it was colored white which means it was not yet 

discovered it says I am discovering it now marks it grey; sets its distance from s as the 

distance of u from s which was already set plus 1; sets its parent in the breadth first 

search tree to do u and adds it to the Q. When its finish doing this for all the three 

adjacency list of u it removes u from the Q here and colors it black. 

(Refer Slide Time: 15:12) 

 

So, here is an illustration of how breadth first search works on a small example. In this 

particular case I have taken an undirected graph as a example, but as I told you in the 

beginning directed or undirected graph does not matter. The algorithm will work fine 

because it just takes an adjacency list as an input and does not really worry itself about 

whenever the graph is directed or undirected. 



So, there are eight vertices in the graph; the vertex s is source vertex. So, what are these 

various things? The other vertices are r s t u v w x y. So, I have also put these parameters 

inside the vertex, what they correspond to is the d attributes. You see the distance from s 

the source is itself 0 to start with every other vertex is this thing infinity from the source 

s. The Q initially has s its distance from itself is 0. 

Now I start exploring the adjacency list of s because that is what is there in my Q. So, 

what are the vertices that are adjacent to s? That is r and w. So, this blue color arrow I 

hope you can see them means that I have set the predecessor attribute. So, I have set the 

predecessor of r as s and I have set the predecessor of w also as s. So, so far my breadth 

first tree that I output which I read out from the predecessor attributes contains this sub 

graph; it contains the nod s with its successor as r and a other successor as w. And 

because I have discovered these tow vertices for the first time I have put them in the Q 

and set their distances from the set s to be one because they are reachable from s through 

one edge. 

Now, you can put them in any order. It just so happens in this case that I put w first and 

then r, nothing will go wrong in algorithm if you put r first and then w. Now because I 

have put w first I start exploring the adjacency list of w. What are the two vertices that 

are adjacent to w? If you look at the third figure here t and x. So, I add them to the 

breadth first tree which is again setting in pi attributes. So, I color this as blue indicating 

that the predecessor of t is w and then I color this h also blue indicating that the 

predecessor of x is also w and I add t and x to the Q. And how far are they from the 

source s? They are at distance two from the source s right because they there are two 

edges you take two edges to reach t. 

Please remember that I had not colored vertices grey in this example, because it became 

a little cumbersome to do it. But what all the vertices are there in the Q are all colored 

grey, but it is not depicted in the figure here. 
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And move on like this: now I start exploring the adjacency list of vertex r because that is 

what is there at the head of the Q. So, V is adjacent to r so add V to the Q here, color r 

black and come out. 

Now, the next element whose adjacency list needs to be explored is that of t. So, I take t; 

there are two vertices at adjacent to t that is u and w; w is already been explored its color 

black so no need to explore it once again. So, add u to the Q set its distance from s to be 

3 and color t black. And I go on like this the next vertex to be explored is s x. So, the if I 

take x the only other vertex unexplored vertex that is incident to x is that of y, then 

remaining two vertices c and w are already colored black. So, I add y to the Q set its 

distance attribute to be 3 and color x black. 
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And move on like this and keep adding till I can at some point the Q will start shrinking 

and the Q will become empty. So, when will the Q become empty? When I have finished 

all the vertices and colored all of them black. 

So, if you look at this final tree how to read this tree; it says x is the source and you just 

read out the blue arrow edges as the tree. So, the tree has an edge from s to r and the tree 

goes like this s to w, w to t, w to x, x to y, t to u. So, breadth first search as an algorithm 

outputs this tree by saying that I have explored all the vertices and it also outputs the 

distance of each vertex from the tree. So, I hope the algorithm is clear to you. So, what 

do I do to start with I take a graph, I start with the source I explore the adjacency list of 

each graph that is what it means to say that I go in a breadth first way and I keep doing 

till I finish exploring. 

And the output of breadth first search is basically a tree that I read out from the pi or the 

predecessor attributes, and the distance of each vertex as it occurs in the tree from the 

source s. 
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So, what is the running time of breadth first search? If you go back and see the pseudo 

code of the breadth first search, so there is this initial for loop that runs once for each 

vertex, so this takes order big O of V time. And then this white loop it runs once it 

enqueues a vertex it does not really go and put is back again; once it enqueues and 

dequeues in each vertex gets in and gets out of the Q exactly once. And for each vertex it 

explores for loop along the length at the adjacency list of that vertex. 

So, BFS scans each adjacency list at most once and sum of the lengths of adjacency lists 

that we saw is theta E. And I told you the initial for loop takes big O of V. So, the total 

running time of BFS is big O of V plus E. So, it is a linear time algorithm that is linear in 

the size of the graph. So, when I talk about the size of the graph which typically consider 

the vertices and the edges; the number of vertices and the number of edges we do not 

really say only the vertices it is a long thing to see you take the loop size of the edges 

also as very much the part of the graph. So, BFS runs in time linear of the size of the 

graph. 
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So, I told you along with breadth first search it also outputs a few other things that will 

be useful. It outputs what is called the shortest paths distance; right from the source s. So, 

BFS runs from a fixed source and shortest path distance is the distance in the BFS tree in 

terms of the number of edges it so happens that BFS outputs the shortest paths distance 

of each vertex from the source. Standard terminology that like book called Introduction 

to Algorithms by Cormen Leiserson; CNRS Cormen Leiserson (Refer Time: 22:03) 

outputs is the shortest paths distance and the notation that is used to this is delta. I have 

taken the pseudo code these examples of that book it is a pretty standard book. 

So, it outputs the shortest path distance written as delta from the source s to each vertex 

V which is the shortest path in terms of the number of edges that is encounter. 
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There are several properties that you need to show that actually BFS is correct; what is it 

means is BFS is correct? 
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So, we will state a unproven theorem like this, let us read out this theorem. It says 

suppose breadth first search is run on a particular graph from a fixed source s then during 

its execution BFS manages to find or discover every vertex that is reachable from s in the 

given graph g and when it terminates it outputs the shortest path distance from s to each 

vertex in the graph. For each vertex that is reachable from s; one of the shortest paths 



will be the path that the breadth first tree takes correct. So, for vertices that are not 

reachable from s; this particular example graph that we saw did not have anything like 

that for vertices that are not reachable from s breadth first search will not be able to 

output anything because it will not explore it. 

So, what you basically do is you begin breadth first search from a fresh source; that is 

nod s then you can explore the graph once again from other source and reach all the 

vertices that are not reachable from the source s. And you can repeat this process to get a 

forest of breadth first trees till we complete. The way I have presented this pseudo code 

is presented in such a way that we present it as we are exploring from a fix source s and 

then we stop. 

So, those vertices that are not reachable from s if there are any in the graph will not be 

explored, but there is no harm in running the breadth first search algorithm again from 

another source to repeat the process. Please remember that. So, you can explore all the 

vertices in the graph instead of getting one breadth first tree you will end up getting a 

breadth first forest. 
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So, now let us go ahead and discuss about how to use the pi attributes to be able to get 

the breadth first tree. If you see this example what I have done is that a blue lined arrows 

are the pi attributes. How do we use that to be able to output the tree? So, what do I do I 

do this given a graph g is equal to V comma E with the source s which is basically input 



to the breadth first such algorithm. I generate what is called the predecessor subgraph by 

using the pi attributes. 

So, what are the vertices of the predecessor of graph? The vertices of the predecessor of 

graph are all the vertices of the given graph such there are reachable from s. Once they 

are reachable from s then pi attribute will be non NIL right, it will not be a NIL thing 

because BFS will reset it to the parent vertex and then you take this source s. What are 

the edge set of the edges of the predecessor of the sub-graph it will be the vertex and its 

predecessor, because that is how I adjacent the tree look like. 

So, you can prove what theorem which says that such a predecessor of graph is actually a 

tree; this helps that it is connected and it has no cycles. So, what breadth first search 

outputs is a tree or a forest of trees containing shortest path from the source to each 

reachable vertex. The edges of this tree are called tree edges. Here are the lemmas that 

we need to use to show the correctness of breadth first search, because the main focus of 

this course is not the algorithm it is the edges stated the lemmas and not proved their 

correctness. Feel free to refer to a book like CNRS to check for correctness or proofs of 

all these lemmas. 

So, initially you need a lemma which says that the shortest path distances increases as I 

explore the graph. So, it says when we start from the source then you reach about u from 

the source having delta of s u has now to be, and suppose u comma V is an edge in the 

graph then what is the shortest path distance from h to V it is at most the shortest path 

distance from s to u plus 1. Because I need to be able to consider the paths to reach from 

s to u and then consider the edge u v, it cannot be more than that this is popularly called 

triangular inequality. 

The second lemma says that suppose you run BFS on a graph from the given source 

vertex then when this algorithm terminates. For each vertex V the value the distance V 

dot d the BFS algorithm computes will be at most at least the shortest path distance; 

sorry it will be at least the shortest path distance, it could be more n fact it will be equal 

to the shortest path distance for this kind of breadth first search algorithm. Third lemma 

says that as I go on exploring the graph the shortest path distances increases. It 

monotonically increases that is what the third lemma says.  



Fourth lemma says that the Q respects the order in which the Q strongly influences the 

order of exploring the vertices. For example, if you go back and see in this course right 

in the beginning when I look at the source x s right it has two vertices in adjacency list r 

and w; I put w first and r next. And I told you at that itself that there is no sanctity about 

it I could put r first and w next. I would got a slightly different breadth first tree, but 

nonetheless there would still be the shortest path distance from the source. That is what 

this lemma say. So, if the Q respects the distance enqueue and dequeue respects the 

distances of the vertices. 

So, you send these lemmas and will be able to show correctness in BFS. Correctness in 

BFS basically says that I do BFS transverse it will finish exploring every vertex that is 

reachable from the source, and it will output the shortest path distance in terms of the 

number of matrix from that source to every other vertex. So, this is all I had to tell you 

about BFS. In the next module we will look at depth first search and also we will look at 

algorithms for connected components in the graph. 

Thank you. 


