
Software Testing

Prof. Meenakshi D’Souza

Department of Computer Science and Engineering

International Institute of Information Technology, Bangalore

Lecture - 07

Elementary Graph Algorithms

Hello everyone. Welcome to the next module. In this module what I would like to spend

some time on is relating to elementary graph algorithms. The last module we saw

structure in coverage criteria related to graphs, we saw how to rectify test requirements

for various structural coverage criteria; we began with note coverage, h coverage went

on till we saw prime path coverage

The next thing that I would like to focus on as far as testing is concerned is how to define

algorithms that will help us to write test requirements and test paths that we achieve

various graph coverage criteria. It so turns out the algorithms that will help us to write

test paths and test requirements for graph coverage criteria use elementary graph search

algorithms; most of them use in fact BFS- breadth for search. Some of them can also use

things like finding strongly correcting components, finding connected components

etcetera. So, once you know these algorithms very well it is a breeze to be able to work

with algorithms that deals with structural coverage criteria and graphs.

So, what I am trying to spend time on in this module and in the next module is to help

you to revise elementary graph search algorithms. We will look at breadth search first

search in this module, in the next module we will recap depth for search and also look at

algorithms based on DFS that will help us to output strongly connected components.

Once you know these algorithms you will move on come back and look at the algorithms

to write test requirements in test paths for structural coverage criteria based on BFS and

DFS.

(Refer Slide Time: 01:59)

Let us begin looking at what are the standard representations of graphs that algorithms

that manipulate graphs will look. Like graphs can be represented in two standard ways as

you might know; as an adjacency lists and adjacency matrix. Both undirected and

directed graphs can be represented both as an adjacency lists and as adjacency matrix. It

so turns out that in testing when we look at graphs as data structures modeling various

software artifacts, we will never look at undirected graphs they are not very useful to us

maybe except rarely when we look at let us say class graph or things like that otherwise

most of the graphs that we will deal with will be directed graphs.

But why I am saying this that the algorithms that we will look in this module and next

module work both well from directed graphs and for undirected graphs we will use then

for directed graphs. So, we will go ahead and see what an adjacency lists looks like.

(Refer Slide Time: 03:01)

So, given a graph with vertex at V and at set E, what is an adjacency lists. An adjacency

lists keep an array of lists. How many lists are there in the array? There is one list for

every vertex, so totally there are mod V lists. What do each of this lists contain each of

this lists contain all the vertices that are adjacent to the given vertex v; that is it contains

each vertex u such that u v is an adjunct in the graph. So, what does and adjacency lists

contain? It contains an array of mod V list one list for every vertex where the list for

every vertex contains all the other vertices that are connected to this vertex through an

edge.

What is the size of an adjacency lists? If you see for directed graphs the directions of the

edge do not matter right. So, when I have an edge u v I practically have two edges u v

and v u. So, for undirected graphs the size of the adjacency lists is two times model: one

edge two edges for every edge present in the graph in the adjacency list. And for directed

graphs there is one for every edge there is one vertex somewhere in the adjacency list of

some vertex, so the size of adjacency list is mod E.

So, for both directed and undirected graphs this total size of the adjacency list will be

this. This first mod V in the theta component represents the number of lists and each list

can be at most mod E size. So, the total size is theta of mod V plus mod E.

(Refer Slide Time: 04:40)

Moving on what is an adjacency matrix representation of a graph look like? Adjacency

matrix of a graph is a mod V by mod V matrix. So, it has as many entries is that of

number of vertices, it is a square matrix, and its filled with 0 and 1 entries; it contains a 1

at vertex V i and V j if the edge V i V j is in the certain edges of the graph otherwise it

contains a 0. So, if you see adjacency matrix will go directed and undirected graphs will

need V square theta V square memory, because they are of matrices of size mod V by

mod V. In addition for undirected graph because the edges are there on both sides the

adjacent transpose of its adjacency matrix will be same as the given adjacency matrix.

So, which is good for what kind of graphs? Graphs could be dense or they could be

sparse. If a graph sparse means it has very few edges; it has lot of vertices which has

very few edges. Trees are examples of graph that has sparse. So, graphs are sparse then

adjacency list is considered to be a good representation, because the size of each list for

every vertex will be small. On the other hand if a graph is dense, which means it has lot

of edges the number of edges is close to mod V square. Then an adjacency matrix is

considered good, because the size of the adjacency matrix is fixed to be V by V matrix.

So, if there are many edges it is just means more one entry lesser 0 entries, whereas if it

is an adjacency list for a dense graph then the size of the each list would be really long.

So, for sparse graph adjacency lists are considered to be good, for dense graph adjacency

matrices are considered to be good; otherwise there is no really big trade of about one

representation or the other it is just for the convenience of our this thing. In our

algorithms we will mainly use adjacency lists. The algorithms that we will deal with in

this two modules we will use adjacency lists.

(Refer Slide Time: 06:41)

So, what are the elementary graphs such algorithms that we will be looking at? We look

at three algorithms, because these three are the main ones that we will need for test case

generation. So, we will look at breadth first search which we will do in this module. The

next module I will help you recap depth first search and we will also depth first search

and breadth for search have several applications. So, we look at one particular algorithm

which deals with how to compute strongly connected components or connected

components using depth first search. So, those two we will look at it in the next lecture.

(Refer Slide Time: 07:12)

So, we will move on and start with breadth first search. What is breadth first search do?

As the name says it searches through a graph, and how does it search through a graph? It

searches through a graph in a breadth first way. That is it starts it searches from a

particular vertex, let us say call it source vertex and what does is that it first explores the

adjacency list of the source vertex; that is it explores the span of the breadth of the graph

at the vertex x. Once it finish exploring the adjacency list of the vertex s which is the

source what is it mean to explore it adds it to a particular queue that it gives it goes ahead

takes a one vertex at a time and explores that vertex adjacency lists and it goes on like

this.

So, this way of searching or traversing through a graph by exploring the adjacency list of

each vertex fully is called breadth first search, because it explores the graph in a breadth

first way; does not go deep unlike depth first search. As it explores it also computes a

few things which are useful for us to keep. What it says is as it explores it also keeps

track of given a fixed source s what is the distance of any other vertex in the graph from

the source s.

If we look at the graphs that do not have any attributes like weights rather things attached

to its edges. So, for us distinct plainly means the number of edges. So, how far is the

particular vertex in the graph from the designated source vertex? How far mean how

many edges are there between the particular vertex and graph that is reachable from the

source vertex; that is what is called the distance of a vertex from its source.

Breadth search first also computes the distance. It so happens breadth first search

computes this smallest distance or the shortest distance we will see what is that in a

meanwhile. And it once you explore a graph by using breadth first search then the result

of that exploration is a tree containing the path from the source to call other vertices that

are reachable from the source. Such a tree is called breadth first tree. Breadth first search

algorithm can be used to output the shortest distance of every vertex from the source. It

can also be used to output the breadth first tree which contains the shortest path from the

source to every other vertex.

(Refer Slide Time: 09:32)

So, here is how the algorithm looks like; before I show you the pseudo code of the

algorithm I will tell you what it does.

(Refer Slide Time: 09:40)

So, it takes the graph and the main job that breadth first search does is to be able to cover

each vertex in the graph; keeps the queue of vertices and that queue contains the queue

of vertices that are colored grey. So, what is breadth first search do? It keep it color

codes every vertex and there are three kinds of colors that it keeps. To start with every

vertex is colored white. And then vertex that is colored white further changes to color

grey and after its colored grey it changes to color black.

Once it changes to color black we say we are done with exploring that vertex fully. So, to

start with all vertices of white, and when does the white vertex become grey? It becomes

grey when it enters the breadth first search maintains a queue of vertices and when it

enters queue it becomes grey. So, it becomes grey when it is first discovered as a part of

the adjacency list of some vertex. And then it is put into the queue.

When it is put into the queue the aim is grey colored it is discovered now, but I am yet

explore this vertices adjacency list. So, I have put it into queue to remember that I have

to do that. And I move on and explore the adjacency list of all other siblings of this

particular vertex. And then when I come back and explore this particular vertices

adjacency list and finish exploring that then I color it black, and when I color it black I

will move it form the queue.

So, how does the breadth first search work? So, here is what if the pseudo code for the

breadth first search. So for each vertex that is not the source remembers s is the source

for which breadth first search algorithm start. So, for each vertex (Refer Time: 11:26) G

dot V s for each vertex in the graph that is not the source which is not s set its color. So,

we keep three attributes with each vertex; we keep a color attribute which tells you what

the color of the vertex is: it could be white, grey or black. We keep a d attribute d for

distance which tells you what is the distance in terms of the number of edges of this

vertex from the source vertex s. And we keep a pi attribute: pi representing predecessor

of parent which tells you who is the parent of a particular vertex in the breadth first tree

that is algorithm is going to output.

So, what are the three attributes that we keep with every vertex? A color attribute, a

distance attribute which tells its distance in terms of a number of edges from the source,

and a predecessor or a pi attribute which tells you who is the predecessor of this

particular vertex in the breadth first tree.

So, to start with breadth first search algorithm colors each vertex white such its distance

to be infinity, because we the distance will reduce right to start with I do not know how

far it is from the source. And if the tree is not yet developed so the breadth first search

algorithm is just began, so its pi attribute is NIL. Now it begins its search from the source

vertex s. So, the first thing that gets into the Q; Q is the Q (Refer Time: 12:52) it

maintains. The first vertex that gets into the Q is s. So, if you see this enqueue Q s puts s

inside the Q Q. So, when puts inside the s Q the color of the vertex s is grey; s the

distance from s itself is 0 s is its own parent so it does not have predecessor its

predecessor is set to NIL. So, Q is initialized and s is put into the Q.

So, as long as there are vertices in the Q which means as long as there are grey color in

the vertices what do you do: you pick up the first vertex available from the Q you

dequeue it right and you start exploring adjacency list that is what this one for (Refer

Time: 13:29) line number a does. So, it says for each other vertex in the adjacency list of

the vertex u in the graph. If its color is white then you make it grey which means you

have discovered that vertex. Now you set its distance from the source s to be whatever in

the distance from the source s of u was plus 1. And then you say its parent in the breadth

first search tree is going to be u, because I found it as the part of the adjacency list of u

so it is natural that its parent is u.

Once you do this you add V to the Q that you get here. And you keep doing this, keep

doing this, till you finish exploring the adjacency list of u. Once you fully finish

exploring the adjacency list of u you come out and color u as black. So is it clear what

the algorithm does; this is to quickly repeat. To start with the color each vertex white sets

the distance and bi attributes, it begins its search at the source vertex s, add this to the Q

color with grey, sets it g and pi attributes, and then for each vertex in the Q it takes it out

from the Q explores the adjacency list of the vertex that was just taken out fully.

What does it means to explore the adjacency list of the vertex. It looks at each vertex in

the adjacency list of the vertex u, if it was colored white which means it was not yet

discovered it says I am discovering it now marks it grey; sets its distance from s as the

distance of u from s which was already set plus 1; sets its parent in the breadth first

search tree to do u and adds it to the Q. When its finish doing this for all the three

adjacency list of u it removes u from the Q here and colors it black.

(Refer Slide Time: 15:12)

So, here is an illustration of how breadth first search works on a small example. In this

particular case I have taken an undirected graph as a example, but as I told you in the

beginning directed or undirected graph does not matter. The algorithm will work fine

because it just takes an adjacency list as an input and does not really worry itself about

whenever the graph is directed or undirected.

So, there are eight vertices in the graph; the vertex s is source vertex. So, what are these

various things? The other vertices are r s t u v w x y. So, I have also put these parameters

inside the vertex, what they correspond to is the d attributes. You see the distance from s

the source is itself 0 to start with every other vertex is this thing infinity from the source

s. The Q initially has s its distance from itself is 0.

Now I start exploring the adjacency list of s because that is what is there in my Q. So,

what are the vertices that are adjacent to s? That is r and w. So, this blue color arrow I

hope you can see them means that I have set the predecessor attribute. So, I have set the

predecessor of r as s and I have set the predecessor of w also as s. So, so far my breadth

first tree that I output which I read out from the predecessor attributes contains this sub

graph; it contains the nod s with its successor as r and a other successor as w. And

because I have discovered these tow vertices for the first time I have put them in the Q

and set their distances from the set s to be one because they are reachable from s through

one edge.

Now, you can put them in any order. It just so happens in this case that I put w first and

then r, nothing will go wrong in algorithm if you put r first and then w. Now because I

have put w first I start exploring the adjacency list of w. What are the two vertices that

are adjacent to w? If you look at the third figure here t and x. So, I add them to the

breadth first tree which is again setting in pi attributes. So, I color this as blue indicating

that the predecessor of t is w and then I color this h also blue indicating that the

predecessor of x is also w and I add t and x to the Q. And how far are they from the

source s? They are at distance two from the source s right because they there are two

edges you take two edges to reach t.

Please remember that I had not colored vertices grey in this example, because it became

a little cumbersome to do it. But what all the vertices are there in the Q are all colored

grey, but it is not depicted in the figure here.

(Refer Slide Time: 18:00)

And move on like this: now I start exploring the adjacency list of vertex r because that is

what is there at the head of the Q. So, V is adjacent to r so add V to the Q here, color r

black and come out.

Now, the next element whose adjacency list needs to be explored is that of t. So, I take t;

there are two vertices at adjacent to t that is u and w; w is already been explored its color

black so no need to explore it once again. So, add u to the Q set its distance from s to be

3 and color t black. And I go on like this the next vertex to be explored is s x. So, the if I

take x the only other vertex unexplored vertex that is incident to x is that of y, then

remaining two vertices c and w are already colored black. So, I add y to the Q set its

distance attribute to be 3 and color x black.

(Refer Slide Time: 19:00)

And move on like this and keep adding till I can at some point the Q will start shrinking

and the Q will become empty. So, when will the Q become empty? When I have finished

all the vertices and colored all of them black.

So, if you look at this final tree how to read this tree; it says x is the source and you just

read out the blue arrow edges as the tree. So, the tree has an edge from s to r and the tree

goes like this s to w, w to t, w to x, x to y, t to u. So, breadth first search as an algorithm

outputs this tree by saying that I have explored all the vertices and it also outputs the

distance of each vertex from the tree. So, I hope the algorithm is clear to you. So, what

do I do to start with I take a graph, I start with the source I explore the adjacency list of

each graph that is what it means to say that I go in a breadth first way and I keep doing

till I finish exploring.

And the output of breadth first search is basically a tree that I read out from the pi or the

predecessor attributes, and the distance of each vertex as it occurs in the tree from the

source s.

(Refer Slide Time: 20:14)

So, what is the running time of breadth first search? If you go back and see the pseudo

code of the breadth first search, so there is this initial for loop that runs once for each

vertex, so this takes order big O of V time. And then this white loop it runs once it

enqueues a vertex it does not really go and put is back again; once it enqueues and

dequeues in each vertex gets in and gets out of the Q exactly once. And for each vertex it

explores for loop along the length at the adjacency list of that vertex.

So, BFS scans each adjacency list at most once and sum of the lengths of adjacency lists

that we saw is theta E. And I told you the initial for loop takes big O of V. So, the total

running time of BFS is big O of V plus E. So, it is a linear time algorithm that is linear in

the size of the graph. So, when I talk about the size of the graph which typically consider

the vertices and the edges; the number of vertices and the number of edges we do not

really say only the vertices it is a long thing to see you take the loop size of the edges

also as very much the part of the graph. So, BFS runs in time linear of the size of the

graph.

(Refer Slide Time: 21:27)

So, I told you along with breadth first search it also outputs a few other things that will

be useful. It outputs what is called the shortest paths distance; right from the source s. So,

BFS runs from a fixed source and shortest path distance is the distance in the BFS tree in

terms of the number of edges it so happens that BFS outputs the shortest paths distance

of each vertex from the source. Standard terminology that like book called Introduction

to Algorithms by Cormen Leiserson; CNRS Cormen Leiserson (Refer Time: 22:03)

outputs is the shortest paths distance and the notation that is used to this is delta. I have

taken the pseudo code these examples of that book it is a pretty standard book.

So, it outputs the shortest path distance written as delta from the source s to each vertex

V which is the shortest path in terms of the number of edges that is encounter.

(Refer Slide Time: 22:26)

There are several properties that you need to show that actually BFS is correct; what is it

means is BFS is correct?

(Refer Slide Time: 22:32)

So, we will state a unproven theorem like this, let us read out this theorem. It says

suppose breadth first search is run on a particular graph from a fixed source s then during

its execution BFS manages to find or discover every vertex that is reachable from s in the

given graph g and when it terminates it outputs the shortest path distance from s to each

vertex in the graph. For each vertex that is reachable from s; one of the shortest paths

will be the path that the breadth first tree takes correct. So, for vertices that are not

reachable from s; this particular example graph that we saw did not have anything like

that for vertices that are not reachable from s breadth first search will not be able to

output anything because it will not explore it.

So, what you basically do is you begin breadth first search from a fresh source; that is

nod s then you can explore the graph once again from other source and reach all the

vertices that are not reachable from the source s. And you can repeat this process to get a

forest of breadth first trees till we complete. The way I have presented this pseudo code

is presented in such a way that we present it as we are exploring from a fix source s and

then we stop.

So, those vertices that are not reachable from s if there are any in the graph will not be

explored, but there is no harm in running the breadth first search algorithm again from

another source to repeat the process. Please remember that. So, you can explore all the

vertices in the graph instead of getting one breadth first tree you will end up getting a

breadth first forest.

(Refer Slide Time: 24:11)

So, now let us go ahead and discuss about how to use the pi attributes to be able to get

the breadth first tree. If you see this example what I have done is that a blue lined arrows

are the pi attributes. How do we use that to be able to output the tree? So, what do I do I

do this given a graph g is equal to V comma E with the source s which is basically input

to the breadth first such algorithm. I generate what is called the predecessor subgraph by

using the pi attributes.

So, what are the vertices of the predecessor of graph? The vertices of the predecessor of

graph are all the vertices of the given graph such there are reachable from s. Once they

are reachable from s then pi attribute will be non NIL right, it will not be a NIL thing

because BFS will reset it to the parent vertex and then you take this source s. What are

the edge set of the edges of the predecessor of the sub-graph it will be the vertex and its

predecessor, because that is how I adjacent the tree look like.

So, you can prove what theorem which says that such a predecessor of graph is actually a

tree; this helps that it is connected and it has no cycles. So, what breadth first search

outputs is a tree or a forest of trees containing shortest path from the source to each

reachable vertex. The edges of this tree are called tree edges. Here are the lemmas that

we need to use to show the correctness of breadth first search, because the main focus of

this course is not the algorithm it is the edges stated the lemmas and not proved their

correctness. Feel free to refer to a book like CNRS to check for correctness or proofs of

all these lemmas.

So, initially you need a lemma which says that the shortest path distances increases as I

explore the graph. So, it says when we start from the source then you reach about u from

the source having delta of s u has now to be, and suppose u comma V is an edge in the

graph then what is the shortest path distance from h to V it is at most the shortest path

distance from s to u plus 1. Because I need to be able to consider the paths to reach from

s to u and then consider the edge u v, it cannot be more than that this is popularly called

triangular inequality.

The second lemma says that suppose you run BFS on a graph from the given source

vertex then when this algorithm terminates. For each vertex V the value the distance V

dot d the BFS algorithm computes will be at most at least the shortest path distance;

sorry it will be at least the shortest path distance, it could be more n fact it will be equal

to the shortest path distance for this kind of breadth first search algorithm. Third lemma

says that as I go on exploring the graph the shortest path distances increases. It

monotonically increases that is what the third lemma says.

Fourth lemma says that the Q respects the order in which the Q strongly influences the

order of exploring the vertices. For example, if you go back and see in this course right

in the beginning when I look at the source x s right it has two vertices in adjacency list r

and w; I put w first and r next. And I told you at that itself that there is no sanctity about

it I could put r first and w next. I would got a slightly different breadth first tree, but

nonetheless there would still be the shortest path distance from the source. That is what

this lemma say. So, if the Q respects the distance enqueue and dequeue respects the

distances of the vertices.

So, you send these lemmas and will be able to show correctness in BFS. Correctness in

BFS basically says that I do BFS transverse it will finish exploring every vertex that is

reachable from the source, and it will output the shortest path distance in terms of the

number of matrix from that source to every other vertex. So, this is all I had to tell you

about BFS. In the next module we will look at depth first search and also we will look at

algorithms for connected components in the graph.

Thank you.

