
Software testing
Prof. Meenakshi D’Souza

Department of Computer Science and Engineering
International Institute of Information Technology, Bangalore

Lecture – 60
Software Testing: Summary at the end of the course

Hello everyone, this is the absolute last lecture of the software testing course. What I

thought I will do in this lecture is to give you an end of the course summary. We will

revisit all that we did in the course, find out what is not done and maybe look at some of

the tools that will help us to do software testing. If you remember and if you listen to all

the  lectures  of  the  course  towards  the  end  of  9th  week,  I  had  done  a  similar  such

summary because that time, we had looked at majority test case design and criteria and I

thought it was apt at that time to give a summary through three-fourth of the course.

This lecture is essentially a repeat of that summary along with a few additional details

that  we  have  covered  towards  the  end  of  the  course  and  one  of  the  things  that  I

consciously took a decision of and did not do in this course is to teach you tools. So,

what I thought I will do is towards the end of the course, I will give you an overview of

about approximately ten tools that are widely used or believed to be widely used the

extent I could gather information across different firms and institutions that to test their

software.

So, this course will essentially; this lecture will essentially be an overview recap of all

that we have done in the course similar to the one that we did in week 9 along with an

overview of software testing tools that are currently been widely used.

 (Refer Slide Time: 01:46)



So, again I said it for week 9, I am starting with what was committed in the course that

we began in the beginning. So, this course we said will cover algorithms and techniques

for test case design by basing by modelling them, software artifacts through 4 kinds of

models graphs logical expressions input sets and models based on grammars.

So, then we said these test cases could be applied to test code white box testing or could

be applied to test based on requirements preconditions post conditions and invariance

which would be considered as black box testing.

 (Refer Slide Time: 02:30)



So, the contents of the course, as I recap from what was posted for you all to see and it

will be in the website, read, just follows; we began the first week by introducing software

testing; what are the process levels, the basic terminologies clarified a lot on them, then

the bulk of the course from about the second week till about the ninth week, dealt with

techniques and algorithms for basically designing test cases. So, we considered software

artifacts  which  included  requirements  design  source  code  elements  of  design  like

preconditions post conditions special models like finite state machines and so on.

And module them first using graphs we learnt some graph algorithms for that we looked

at structural coverage criteria purely based on graphs, then we looked at augmenting the

structural coverage criteria with data flow which is the basis of a course and program

analysis also which talked about definitions and uses of variables, then we applied the

structural coverage criteria and the data flow coverage criteria to graph models derived

from source code,from design elements finite state machines and from specifications.

After  this  coverage  on  graphs,  we  started  with  logic  I  gave  you  a  very  very  brief

introduction to logic, we saw what predicates were clauses were, what is propositional

logic,  how  difficult  are  the  algorithms,  checking  satisfiability  of  propositional  logic

formulae and predicate logic formulae.

And then we looked at  coverage  criteria  based on logical  expressions,  we looked at

simple coverage criteria like predicate coverage, clause coverage, then we also looked at

interesting criteria like active clause coverage, 3 versions of it, inactive clause coverage;

2 versions of it. These are widely used for testing safety critical systems, then we took

this logical coverage criteria. First saw how to apply it to source code, if you remember,

we saw 2 examples; example of a thermostat; an example that determines the type of a

triangle, then we looked at how to apply logical coverage criteria for design elements

where we looked at 3 conditions and how to apply logical coverage criteria for state

machines.  Moving on we looked at  black box testing I  introduced you to functional

testing as you would find in many popular text books.

 (Refer Slide Time: 04:56)



We  learnt  equalance  partitioning,  boundary  value  analysis,  desertion  tables,  random

testing and so on, then we looked at a generic technique that partitions the input domain

and derives test cases by considering a combinations of these partitions. We saw how to

model the input domain, how to partition the input domain and we saw about 6 different

criteria to model combinations of input domains and write test cases for them, if you

remember, we said all combinations coverage, each choice coverage pair, wise coverage

team wise coverage and for functional testing based input domain modeling. We looked

at based choice coverage and multiple base choice coverage. So, that was a break from

logic and graph based testing. We did black box input space partitioning base testing

from there on, we moved on and looked at mutation testing which involved testing based

on grammars.

I first introduced you to grammar as it occurred in programming languages to be able to

do  that;  we  saw  regular  expressions  context  free  grammars,  then  we  saw  coverage

criteria based on syntax mutation testing coverage criteria and then what it is say in the

course,  we  said  we  are  going  to  learn  it  to  tests  object  oriented  applications  web

applications embedded software GUI and then we said we will tests symbolic testing and

concolic test.

 (Refer Slide Time: 06:35)



So, if you remember, this is how a software development lifecycle works. It is a classical

waterfall  model,  we  begin  with  writing  requirements  high  level  system  level

requirements, drill  down to hardware software and specific requirements follow it  up

with  architecture  and  design  follow  it  up  with  coding  and  unit  testing  and  then

integration and system level testing and then release and maintenance.

Testing applies throughout this cycle and how does testing apply throughout this cycle?

We bend the waterfall model to be able to get what is called the V model waterfall model

is this part a part of it is depicted on the left hand side of the V model as they say, this is

just a copy of what is given here requirements architecture low level design have refined

it a bit.

 (Refer Slide Time: 07:06)



Because I want to be able to link it to integration testing coding and testing and what I

did in the last phase here was to expand out testing comes along with coding which is

unit testing followed by integration testing for which inputs or design for test cases come

from the  low level  design  because  that  tells  you;  how a  software  is  broken up into

components  of  modules,  followed by system testing  for  functional  to  system testing

inputs come from the design document. System testing involves putting the entire thing

together  and  testing  if  the  overall  software  integrated  with  the  system  needs  this

functionality.

As we saw in the last  lecture,  in this  week’s lecture or nonfunctional  testing system

testing also includes nonfunctional testing nonfunctional testing tests for various quality

attributes like reliability  security  usability  performance interoperability  and we saw a

whole  set  of  nonfunctional  testing  attributes  where  does  the  majority  of  inputs  for

designing such test cases come from. They come from the architecture document which

gives a static picture of the various components of the software, how they interact which

is the processor in which, it is going to run on what is the platform care features and so

on; after all this is done finally, users; end users of the software do acceptance testing to

check if the software and the system needs its desired requirements or not in fact.

 (Refer Slide Time: 08:56)



In this week, we saw some testing after the acceptance testing which is basically going

back to the waterfall  model  deals  with this  phase of  software development  which is

release and maintenance.

I  gave  you  an  overview  of  regression  testing  which  people  do  when  they  maintain

software to cater to patches upgrades or change requests that happen in the software.

 (Refer Slide Time: 09:16)

So,  these are  the various sets  of terminologies  that  we have seen.  Each one tries  to

attempt testing and classify it into categories based on a particular feature or a phase that

the testing is involved in the 5 types of testing that we saw are unit testing which is done



here  by  the  developer  especially  methodologies  developers  are  expected  to  do  unit

testing, you cannot rely and hope that there will be a separate tester who would do it for

you  followed  by  integration  testing,  here  components  are  put  together.  Components

could  be  software  software  components  or  software  hardware  components.  We

specifically  saw integration  testing  related  the  software  software  components  in  this

course and not integrating it with hardware, then system testing is done with the full

system in place software running on the desired hardware platform.

Finally acceptance testing is done by customers and a related term is beta testing which

is when the software is released, but with known bugs not 100 percent guarantee that it

will cover and people do beta testing as a version of acceptance testing.

 (Refer Slide Time: 10:27)

 

So, this spans the V model as we saw it another classification of testing are what is called

methods in testing black box and white box. We saw these in detail black box testing

considers the software or the system as a black box only the executable is given, we do

not look at its internal details white box exploits the structure of the considered software

to be able to design test cases.

Black box is widely practiced across several different testing phases and stages white

box is typically restricted to unit testing integration testing at software software level and

at the system level a lot of the course, we did see a mixture of white box and black box

testing as it applies to the first row, here we did not spend too much time for black box



testing as it applies to the second role. Here, the last week in this lecture in this week, I

gave you an overview of some of these techniques.

 (Refer Slide Time: 11:23)

Another related thing is what are the activities or the processes of testing. The first thing

is after you have your testing goals is to be able to design your test cases; that is what we

did most of the course. We did an algorithmic style of designing the test cases and then

once you design a test case you pick your tool of choice for execution. For this course, I

had introduced you all to the tool JUnit because it was popularly used for java and the

book that I followed for majority of the course also uses JUnit test cases. So, that is why

I had introduced that tool to you, I hope you were able to try out some examples with

JUnit once you have JUnit and you figure out; how to automate the test script on JUnit.

The next job is to execute it and evaluate the test case to see if the test case is actually

revealed an error in the program or not.

Typically  lot  of  other  activities  happen  along  with  testing  test  management  test

maintenance documenting the test cases typically if these activities have become very

important after a software is released when it is being maintained here because that is

when you do regression testing as we saw in this week. And the sources documents that

are needed for regression testing are the documents that you keep with the role of test

maintenance which is basically reusing with set of test cases for regression testing and

documentation which talks about documenting a test cases which will help you to select



which test cases to reuse for regression testing then this is a summary of the criteria

based design that we saw I just repeat it to you.

 (Refer Slide Time: 12:55)

So,  I  will  be  brief  here.  Software  artifacts  could  be  code  source,  code  design,

preconditions, post conditions assertions, specifications models like finite state machines

activity diagrams and so on.

I take them based on what I want to test; I can model it as a graph model. It is a logical

predicate consider only the inputs that drove the software artifact or work with the syntax

of the artifact. Once I model the software artifact using one of these 4, I can use it to test

source code design finite state machines, I can again use it to test source code finite state

machine and specifications, but where I consider input space partitioning its only black

box.

 (Refer Slide Time: 13:55)



So, I can use it only to test a software with reference with to its black box testing code

this was the main bulk of the course as I taught you from the book by Amman and Offutt

along with this, we also saw several classical software testing terminologies, typically

when you pick up other books in software testing, when it comes to testing source code,

you would hear  of terminologies  like cyclomatic  complexity independent  paths basis

paths  testing  D  to  D  paths  statement  coverage  branch  coverage  loot  coverage  path

coverage and so on.

We did look at all these terms because these are classical standard terms and software

testing. Now I hope it is clear; how these terms relate to the coverage criteria that we saw

in the course, then when it comes to design integration testing, I told you about top down

integration,  bottom  up  integration,  the  various  kinds  of  interfaces  message  passing

interface, client server interface, shared variable communication, then we saw what test

stubs and test drivers were how to create stubs, how to test using stubs and drivers and

typically do top down or bottom up integration which are the 2 most popular integration

testing techniques in black box testing techniques, I did a module on functional testing

where you learnt about equivalence partitioning boundary value analysis and decision

tables.

 (Refer Slide Time: 15:09)



In the process, we also learned a bit of discrete maths and formal languages, I taught you

graphs; graph algorithms DFS-BFS; topological stores strongly connected components,

then we looked at logic specifically propositional logic and basics of predicate logic;

how difficult  is the satisfiability problem for propositional logic its N P complete for

predicate logic is un-decidable. So, we work with a lot of heuristics bundled together and

sat solvers to be able to solve the logical formulae, we also saw a detailed introduction to

finite state machines to regular expressions to context free grammars as they were used

to build grammars or the syntax of programming languages.

 (Refer Slide Time: 15:50)



So, we saw several examples of source code, if you try to recap the examples that we

saw throughout the program, we saw triangle types, then we saw thermostat,  several

different examples, then we saw examples of sequencing constraints, preconditions, post

conditions, if you remember calendar method Q example file open, file close, then we

saw examples of finite state machines for specification sub wave microwave oven and so

on.

(Refer Slide Time: 16:27)

So, we also after week 9, this was what I did newly after week 9, a lot of what I told you

now was a repeat of the overview that I had given at the end of week 9. After week 9, we

mainly concentrated on the following topics. We saw how to test web applications static

hypertext websites, dynamic hypertext websites from the client side and from the server

side I had taught you one technique each for server side testing and for client side testing

bypass testing, user session, data base testing and testing based on graph models which

were derived from the code corresponding to server as atomic sessions. And then we also

looked at testing of object oriented software because typically object oriented software

have lot of features like inheritance polymorphism we did a sort of a crash introduction

to all these object oriented features, we saw how these features can lead to lesser static

determinism and you do not know which version of the variable is being called and how

to determine the state.



We saw the models of yo-yo graphs, we saw various object oriented faults in detail and

towards  the  end  in  this  week  I  defined  object  oriented  integration  testing  coverage

criteria for you all last week; week 11, we saw symbolic and concolic testing techniques.

 (Refer Slide Time: 17:41)

Which was a distinctive departure from the coverage criteria based techniques that we

have seen until now in concolic testing, we particularly saw the dart tools algorithm then

as requested by the users of this course I gave an overview of these topics.

Mobile  applications  testing;  testing  non  functional  things  with  specific  focus  on

performance testing and regression testing, while I did this, I also gave you references to

some tools, open source and proprietary that you could have access to or use it to try it

out and what we did not do in the course what else is there in software testing that we did

not do over the course, first of all I hope you do believe that we have covered a lot in the

course and I hope it was useful learning for you.

 (Refer Slide Time: 18:22)



But because like any other course in any other topic we have to leave out a lot of things,

so, what we did do is nonfunctional testing in detail. I did one module of nonfunctional

testing, we covered performance testing a bit low stress testing, but security testing is a

very  beautiful  theoretically  rich  area  which  we  did  not  cover  at  all  then  there  is

something called reliability analysis which I told you when we did nonfunctional testing

typically  reliability  analysis  for  both  software  and  hardware  work  with  models  that

involve probability like discrete mark of decision processes hidden mark of models and

they  need  a  good  amount  of  statistics  and  probability  to  be  able  to  determine  the

reliability, right which talks about measuring parameters like mean time between failures

average down time average up time and so on.

We  did  not  do  any  of  those  because  those  are  quite  involved  theoretically  and

algorithmically and need you to pick up that kind of maths another big area in testing

which we have all together completely left out is usability testing usability engineering

itself is a big area inside that testing for usability is very important catching up a lot

because of all the apps and games and other interfaces that we are dependent on to use

our software specific part of usability testing is testing of graphics user interface which I

did list as a part of the contents of the course, but I did not do because of lack of time. I

wanted to there is a particular style of techniques by which you work with graph models

that look a lot like finite state automata using which you can test graphics user interface

which I did not do.



Testing of embedded software is very critical because typically embedded software is a

safety critical system and it goes through very rigorous testing process. So, I should say

that all the coverage criteria base testing that we did so far can very well be used to test

embedded  software  for  GUI  applications  and  so  on  but  specifically  for  things  like

embedded software people do; what is called real time testing also because such software

come with lot of real time constraints like interrupts timeouts and exception handling

features. So, there is specifically a lot of testing done for these kind of software which

we did not look at, but what were we looked at can be applied to test embedded software

and can also be applied to tests GUIs also and tools I had introduced you to JUnit mainly

because the programs that we dealt with they are all compatible with JUnit it is a nice

open source testing tool for java thing, but apart from JUnit we did not do any other

tools.

I will do some tools now as a part of this lecture, give an overview of several other tools

and the other thing that we did not do. If you go back to the V model, here after system

testing comes acceptance testing which is a software is released into market and users

basically check if a software is working or not, there is not much algorithmic content in

that thing typically, you know for an acceptance testing like a car; what they do is to see

if the brakes of the automatic braking system is working fine, they try to crash a car and

check the brake system. Similarly for the software that  controls how the airbags are

handled they try to create a scenario to check if the car controller  is bringing up the

airbags  properly or not.  So,  these things are either  done using exhaustive simulation

setups or in the real life. So, there is not much algorithmic mathematical content that can

be taught as a part of such a course.

 (Refer Slide Time: 22:33)



So, we did not do acceptance testing because of that reason. So, now, for the rest of this

lecture, I want to spend some more times on looking at tools. Before we do that I want to

justify and tell you why we did not look at tools at all throughout this course, it might be

a very natural question that you have tools are needed for testing they are indispensable

in  fact  for  testing;  testing  cannot  exist  without  automation  with  the  help  of  tools.

Automation is necessary only for executing a test case, for documenting a test case and

maybe use the results for analyzing the test case to see if there is an error in the software

or not, but who is going to design the test cases that has to be done by the tester or a

programmer that is what this course focused on algorithms and techniques, for test case

design that is manually done, once that is done, you should be able to use any tool for

automation and to be able to execute it.

Also the other reason why I did not really teach tools is basically what is the teaching a

tool, mean you download the tool; you learn its interface you learn the commands of the

tool or if it has a web interface you learn the web interface or the IDE. So, basically all

our focus will go on figuring out the then trying to learn its interface and how it interacts

with the user, yeah, I am sure you would agree with me that that can be picked up on

your own and you really do not need a teacher to be able to teach you that. So, typically

in a classroom course, we do not focus on tools, it is only if you have a lab component

attached to the classroom course that you would do the tool and that also you sort of try

to pick up on your own, we typically do not teach it as a part of the routine lectures.

 (Refer Slide Time: 24:13)



So, what I will do for the rest of this course; this lecture is to give you an overview of

tools.  So,  tools  that  involved  in  testing  can  be  broadly  classified  into  the  following

categories  tools  do  functional  testing  automation  tools  that  do  nonfunctional  testing

typically, load testing, performance testing, security vulnerability analysis and tools that

are used for test management which is basically to archive record test case to track the

progress of testing to plan your testing project managers who focus on testing project

managers use these tools.

Another important category of tools are what are called bug tracking tools you might

have heard of tools like Jira and all that once you do a defect, right find, in effect using

testing the idea is to be able to record that defect take it back to the developers see if the

developer is able to fix that bug or defect and re-test it again to see if the defect has been

mitigated. So, once you find the bug or a defect it needs to be tracked from the time it

was found to the time that it is rectified.

So, there are specific tools that help you to track these bugs or defects those are called

bug tracking tools. As a part of my modules on various non functional testing I had given

you some of the nonfunctional testing tools that are popular and please remember, when

we did that web testing, I had given you the most exhaustive webpage that I am aware of

that contains several different nonfunctional testing tools. So, what I will do now and I

also give you tools for regression testing and mobile apps testing that I am familiar with

what I will do; now is I will try to focus on testing tools that will do functional testing

some of them will also test for load and performance we will see them as we go on.



Here is  what is believed to be the most widely used set  of tools for test  automation

Selenium Watir, this is pronounced water tool called Ranorex which I already introduced

you this week in another module testing whiz then there is something called HPEUFD;

this tool was recently renamed it was popularly known as QTP you might have heard

about it, there is another tool called Sahi Sahi and Selenium are used by many companies

test complete Telerik test studio WatiN which was motivated by Wtir.

 (Refer Slide Time: 26:22)

So, well just look at a few of these tools and see what they can do.

 (Refer Slide Time: 26:41)



So, selenium is basically a suite of tools to automate web browsers its or web browser

based test automation. So, it automates web browsers across several different platforms

windows based Linux based and so on selenium as I told you runs on many different

browsers many different operating systems can be controlled by several programming

languages and testing frameworks it basically gives you a web interface to handle and

automate your test execution.

It  records;  it  offers  record and playback features  which I  told you in the context  of

regression testing to write tests without learning the IDE and it is considered to be one of

the most used tools in the industry.

 (Refer Slide Time: 27:24)

Then there is a tool called Watir,  pronounce it as water, it stands for web application

testing in ruby, ruby is this programming language. It basically is an open source family

of libraries that are written in ruby again for web browser automation for automating

web browser automation and text execution through web browser automation a Watir

project  typically  consists  of  smaller  pieces  Watir  classic  is  the IE process where the

server is the IE process and what does it serve the clients, they are the objects that you

want to automate and execute as a part of your test case execution how does it do it

exposes their methods and then the ruby program in which Watir is written becomes the

client then it manipulates the automation objects.



So,  that  is  how the classical  version works.  There is  a web driver  Watir  which is  a

modern version of Watir API based on selenium tool. So, selenium can be integrated with

Watir then there is something called Watir spec.

 (Refer Slide Time: 28:28)

Which is basically an executable version of the Watir AP,I then another popular tool is

testing whiz it is a cordless automation testing tool for software testing web applications

testing  mobile  apps  testing;  testing  for  databases  like  SQL cloud  testing;  testing  by

hosting on the cloud web services which form a specific part of web apps and for API

testing, the nice thing about testing whiz is that its integrated with several different bug

tracking and test management tools. So, you could actually use the same tool to be able

to track your defect, if you have found any and manage it later, instead of switching over

to a separate bug tracking tool and because of this testing whiz this the belief is that is

considered good for people who follow agile methodologies.

 (Refer Slide Time: 29:16)



The next 1 is QTP; earlier it was known as QTP short form for quick test professional,

but now it is called HPE unified function tester, it is primarily used for functional testing

regression testing and testing of service apps you can automate user actions on a web

browser. This what always happens in most of the automation tools or you can automate

it on a client based computer application that you write for it.

 (Refer Slide Time: 29:52)

You  can  test  the  same  actions  for  different  users,  for  different  datasets  on  various

windows operating systems and various browsers. The next popular tool in our list is

Sahi;  it  is  the  nice  thing  about  it  is  that  it  is  an  open  source  tool.  Again  for  test

automation, it automates web application testing you can use it with several different



browsers, it supports all these frameworks that are listed here and it also does record and

playback like most other automation tools.

 (Refer Slide Time: 30:12)

Telluric studio is the next in our list. This again automates desktop web and can be used

for mobile applications testing, I do not think I listed it in my mobile applications lecture,

but  I  am not  sure this  also does  nonfunctional  testing,  it  can  test  for  graphical  user

interface, load stress and performance, it offers supports many programming languages

like HTML, AJAX, ASP dot NET, JavaScript and so on, it offers record and playback

features. In fact, most of these tools offers record and playback features supports several

browsers can do manual testing and it is integrated with bug tracking tools. So, this was

an overview, I have did not give you URLs because I realized that they keep changing

and once I give a URLs for such a long list, it is going to be difficult for me to keep track

of when the website gets updated, but feel free to Google for them, you will be able to

get the URLs well.

So, this will give you a basic set of test tools open source and proprietary, ones that are

available for free trials for you to start your testing exercise, if you are interested; if you

want to call yourself as an expert complete expert in software testing, apart from this

course, you could also learn one of the popular tools like selenium or Sahi or one of

those and the get to familiarize yourself with their interfaces and what their capabilities

are and how to do automation of test case execution in them that will definitely help you



if you are interested specifically in job interviews and so on to be able to get a job as a

quality expert.

So, I hope you enjoyed this course and we hope these set of lectures were useful for you

and you learnt a bit in software testing all the best for your upcoming exams hope to see

you all again in NPTEL sometime.

Thank you.


