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Hello everyone. Now we are on the second week; what we looking at this week is 

basically you look at graphs and to look at various algorithms that we can use for test 

case design using graphs. In the last module I gave you brief background of graphs as it 

was necessary for this course. So, to recap what we saw in the last module: we saw what 

graphs where and in the basic concepts like degree of vertex, what is the notion of paths, 

and what are trips, what is visiting a note and few are the details. So, the plan is to be 

able to use graphs to design test cases. So, we take software artifacts like code 

requirement design model them as graphs and see how to design test cases, how to define 

coverage criteria and then to design test cases using graphs. 

So, in the first two modules that we will see as a part of graph based testing what I will 

do is we look at coverage criteria purely based on graphs. I will not really show you too 

many examples of how software artifact some modeled as graphs. Instead we directly 

deal with graphs as data structure it is and define coverage criteria. In today’s lecture we 

will define coverage criteria that are based on the structure of the graphs; that are based 

on nodes, vertices, edges, paths and so on. 

The next lecture I will look at some algorithms and deal with coverage criteria that are 

again based on the structure of the graph. Moving on what will do is when annotate the 

graph the vertices and the edges of the graph with statements and other entities. And will 

define coverage criteria based on data that deals with in the graphs. After we do these 

three kinds of coverage criteria looking how they are related to each other, and how they 

can be use to design test cases based on graphs we will consider a later module where we 

will take various kinds of software artifacts; we will begin with code, then to go on to 

design, then move on to requirements. 

Modeled each of them as graphs and then see how the coverage criteria that we will be 

learning throughout these modules can be used to actually design test cases for covering 

the software artifacts. 



(Refer Slide Time: 02:29) 

 

So, what are we be doing at. So, first I will today’s module I will deal with structural 

coverage criteria, in the next module also we look at structural coverage criteria but we 

will focus on algorithms, and then we will look at what is called data flow coverage 

criteria which consider graphs with data variables and they values and then define 

coverage based on them. As I told you post this we will take it has several software 

artifacts one at a time module them as a graphs and see how to use these coverage 

criteria to design test cases. So, we begin with coverage criteria in this course. 
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So, what are the various coverage criteria that we are going to see? Here is the listing. 

So, we will begin with what is call node coverage or vertex coverage; will define a test 

requirement which says you have to cover visit every node. And then we will define test 

coverage requirements for edge coverage where we say we visit every edge. Then we 

look at edge pair coverage which insists on visiting every consecutive pairs of edges 

which are paths of lengths too. Then we look at path coverage in the graph. In path 

coverage these are the various things that we look at. We look at complete path coverage 

which may not be feasible all the time. 

And we will move on and look at very popular coverage criteria called prime path 

coverage. And then to make prime path coverage feasible we look at these round trip 

coverage criteria’s. So, we will see each of these one at a time. 
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So, we begin with node coverage, what is node coverage? It simply insists that you have 

a set off test cases that visit a every node in your graph. So, it could be the case that the 

graphs corresponding to a particular software artifact can be connected or disconnected if 

it is disconnected then the graph has several disjoint components. What do we mean by 

disjoint components? There are no edges between vertices of these components. 

So, in which case if I see node coverage needs to visit every node you might ask how do 

I go and visit other nodes then the graphs. So, what we insist is the node coverage visits 

every reachable node; every reachable node means every node that can be reached from 



the designated initial node. So, what we mean is that per component per reachable 

component that is connected you visit every node. 

So, what is node coverage? Node coverage says the test requirement for node coverage 

abbreviated as TR says you basically right a set of test cases that will visit each node in 

the graph. Now how will you write a set off test cases that will visit each node in the 

graph, what will a test cases look like how can you go about visiting nodes in a graphs. 

You have to start from a initial state and you have to walk along paths in the graphs. As 

you walk along paths you visit various different nodes. 

So, set off test cases that we will meet the test requirement on node coverage would be a 

set of test paths that begin at an initial state and visit every reachable node in the graph. I 

will show you an example after a couple of slides. 
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And then the next coverage criteria that we will be looking at; it was what was is called 

edge coverage. So, light node coverage edge coverage basically insists that your visit 

every edge in the graph. So, your test requirement says you visit each requirement path 

of length up to 1. So, you might ask when I say visit every edge why am I written writing 

it as visit each reachable path of length up to 1. Now look at an edge in a graph what is 

an edge look like an edge can be thought of as a path of length 1, because which is 

connects two vertices, but instead of saying visit every path of length 1 which basically 

means visit every edge. 



We are slightly modifying the conditions to say visit every path of length up to 1, which 

means you visit paths of length is 0 and paths of length 1. What do paths of length 0 

correspond too? Paths of length 0 correspond to paths the just contains single vertex. We 

want to be able to say that edge coverage subsumes node coverage in the sense that if I 

have a set off test paths that satisfy edge coverage then those set of test paths will also 

satisfy node coverage, because we want to be able to see. So, we modify edge coverage 

criteria definition to include that it visits every path of length up to 1. 

So, it visits every single vertex and it visits every single edge. So, by definition edge 

coverage will subsume node coverage. 
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Here is an example to illustrate how edge and node coverage works. So, here is a small 

three vertex graph: vertex one is a initial vertex as you can see its mark to design coming 

arrow, vertex three is the final vertex it is marked with its double circle and it is a small 

graph. If you remember in the previous example we had a new statement and I showed 

you how to model the control flow graph corresponding to that if statement remember, 

which did not have a else part just had the then part. This was the graph that correspond 

to the control flow graph of a that if statement. 

I of course, remove the labels in the edges all that step, because we are looking at purely 

structural coverage criteria which defines coverage criteria based on the basic structure 

of the graph; does not really look at labels of edges of vertices. So, in this graph what 



would be node and edge coverage; node coverage the test requirement for node coverage 

says that there are three nods so you please visit all three reachable nodes, all three of 

them are reachable here. So, how many paths can visit all three reachable nodes? So, I 

could take this path I start from 1 and node 2 and then to 3. In this path I have visited all 

the three node 1, 2 and 3. There is another possible path in the graph I could start from 1 

and then I go to 3. Suppose I take this as the test path corresponding to the test 

requirement then I have only partially achieve node coverage, I have visited the nodes 1 

and 3 I have not visited the nodes 2. 

There is no harm in choosing that, suppose you choose that then you have to add this 

path also 1, 2 and 3, but instead I could directly choose this path 1, 2 and 3 as my test 

path. And in that case I would directly met the test requirement of node coverage which 

is one path. 

Now, let us look at edge coverage how many edges are there in the graph? There are 

three edges in the graph: one edge from 1 to 2, one edge from 1 to 3 and another edge 

from 2 to 3. What is edge coverage mean? The test requirement for TR, for edge 

coverage says you visit all the three edges there edge 1, 2 the edge 1, 3 and the edge 2, 3. 

Here if you see suppose I take this path 1, 2 and 3 how many edges do I visit in this 

path? I visit 1, 2 and 2, 3. So, I visit two edges so that is this path here. But I have to be 

able to visit the edge 1, 3 so I have to take these paths. 

So, to meet the test requirement for edge coverage and this graph I need two test paths; 

the test path 1, 2, 3 and then the test path 1, 3. This is another small observation. Suppose 

the graph is a sort of a straight line right there are no branching and it just to corresponds 

to some core the corresponds to sequence statements; it just like one linear order or a 

straight line or a chain- in that case node and edge coverage are same, because when I 

visit every edge there is only one path in the graph I visited the path and in the process I 

visited every node also. So, node and edge coverage become different in terms of the test 

paths the satisfied only if there is a branching in the graph. 
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So, we move on what is the next coverage criteria that were there in my lists, and go 

back to that slide. So, we did node coverage which basically says visit every node. So, 

you write test path that visit every node edge coverage says visit every edge once, so you 

write test paths that visit every edge. Now will move on to edge pair coverage and then 

look at path coverage. 

Before we move on to edge pair coverage I would like you to spend a minute thinking 

about what would node coverage, how would node coverage and edge coverage be 

useful. Assuming that such a graph is a control flow graph corresponding to a program 

what can you think of node coverage and edge coverage put together they basically mean 

you execute every statement in the pro.  

Because they insist that you visit every node and then there is insists that you visit every 

edge. If you write a set off test path that satisfy this then you are writing a test path that 

basically execute every statement in the program. So, you are looking for a set off test 

cases that will exercise for test every statement in the program. Node coverage and edge 

coverage might be quite difficult to achieve, because for large pieces of program where 

the control flow graph is fairly large writing a set of test cases that will achieve execution 

of every statement, every node or every edge can be a large set of test cases and 

sometimes in feasible also. 



So, we look at other state of text cases. The next set of structural coverage criteria that I 

would like to talked about is what is called edge pair coverage. So, as a name says you 

your test requirement here is the actually consider pairs of edges; not pairs of edges that 

far away from each other pairs of edges that are consecutive to each other. In other words 

you consider paths of length up to 2; paths of length up to 2 includes paths of lengths 0 

which include nodes paths of length 1 which are edges and paths of length 2 which are 

actually sets of edges that occur one after the other. So, how if you take this example 

graph, how many paths of lengths to there; all these six paths a paths of lengths 2. So, I 

start from 1 which is an initial vertex 5 and 6 of final vertices. 

So, I go from 1 to 4, 4 to 5 that is a path of length 2 pair of edges then I go from 1 to 4, 4 

to 6 another pair of edges that are consecutive 2, 4, 5, another pair of edges 2, 4, 6; 3, 4, 

5; 3, 4, 6. So, my text requirement says- you visit all these paths of length to exactly 

once. So, here they have written length up to 2, but I have listed here paths of lengths 2 I 

implicitly assume that it includes paths of length 1 paths of length 0. 

So, how many text requirements can I write? If you look at this structure of the graph it 

is so happens that I need one path for meeting each of these TR; it is I cannot do better. 

So, test paths or basically all these six things, I cannot write anything shorter. Now why 

do I need paths of lengths up to 2, the same reason we said when we do edge coverage 

even though edge is a path of length 1 we changed it as path of length up to 1, because 

we wanted edge coverage to subsume node coverage. So, for the same reason we want 

edge pair coverage to subsume node coverage and edge coverage, so we insist that the 

TR contains all paths of length up to 2. 

Suppose you do not you are not very particular about this requirement there is no harm in 

saying that edge pair coverage means, you visit all paths of length exactly 2. So now, 

before we move on what you think edge pair coverage would be useful for. One good use 

of edge pair coverage it is to cover all branches in the program. So, if you think of this as 

the control flow graph representing some piece of code, it not worry about what that 

piece of code is, but let us assume that this is the CFG for some code. 

What could node four be? Node four could be corresponding to an if statement right 

which says it has two branches: if its then it is true may be you go to 5 if else true may be 

you go to 6 right due to something here you do something here. So, when I do edge pair 



coverage what I cover is from 1, 2 and 3. What are the various ways and which I can 

visit 4. And from 4 what are the various ways and which I can cover the two branches 

that go out of 4. So, edge pair coverage is useful. Suppose I think about it what did I do I 

did paths length 0 which was vertices no coverage, then I did paths of length 1 which 

were edges edge coverage. Now I say paths of length up to 2 I did edge pair coverage 

you can move on right you can say paths of the length 3, paths of length 4, paths of 

length 5. Then if we go on like this what we have is what is called complete path 

coverage. 
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You have a test requirement TR which says that you cover all paths in the graph. Now if 

you think about it what would be the use of this? Will it be useful? What would all paths 

mean? If I say cover all paths on the graph let us assume a case where the graph has a 

loop. In the two examples that we saw in the previous two slides the graph did not have a 

loop, but let us assume the graph has a loop. How many paths do you think will be there 

in the graph? They will be infinite number of paths in the graph, because I visit the loop 

ones I get one path, and I visit the loop once again I will get another path, I visit a loop 

once again I get another paths. So, I can go round the loop again and again and again and 

get more and more paths longer and longer paths. 

So, there will be infinite number of paths. And given these infinite numbers of paths how 

do I achieve complete path coverage. And left be up to go on writing test paths. So, for 



this reason complete path coverage is believe to be an infeasible test requirement. 

Infeasible in the sense that I will never be able to stop testing- if I want to achieve 

complete path coverage intuitively. Also if you think about it not only is it in feasible, 

what is a use of it? It may not be very useful for us. What is the point you going on 

repeatedly executing a loop once, twice, thrice, four times and so on. It is not interesting 

infeasible and not very useful. 

So, what we say is that we will list complete path coverage as a test requirement, but it is 

not practical useable. What is practical useable is what is specify path coverage. What is 

specified path coverage says? It says that the use as a test engineer will give you the set 

of paths to cover. The TR will be a set of paths that is specified by a test engineer or a 

user which says you cover these paths. So, paths could be some special things, they we 

do not know what they are, but the test is basically gives a set of paths and says you this 

is your test requirement. Please write a set of test cases that will cover this path. 

So, we see specify path coverage your test requirements contained a set of paths where 

that is set is specified by the user. 
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So, will go and now move on and see what is one specific useful specified path coverage. 

Before that I will give you another example just to recap all the coverage criteria that 

will see so far. So, what are the folk structural coverage criteria that we saw so far? We 

saw node coverage, edge coverage, edge pair coverage and complete path coverage. So, 



let us take a small graph. Here is a graph on the left hand side, it has a worth 7 nodes, the 

node 1 is the initial node, and there is one final node which is node 7. 

If you see this could constitute a reasonably interesting control flow graph. So, if you try 

to map it to assume that it is a control flow graph corresponding to some code there is 

branching at statement one. So, maybe there was a nest statement here. There is another 

branching at statement 3. There is a another branching statement 5. One branching ends 

in the final state 7, one branching goes into a loop between 5 and 6. So, maybe there was 

a while statement here this means skipping the loop and this means executing the loop. 

So, what will node coverage on such a graph be? Node coverage on such a graph the test 

requirements says there are 7 nodes please visit all 7 nodes. How many test path will 

visit all the 7 nodes there could be one test path like this I do 1, 2, 3 4 7. This is the path, 

this test path from the initial node 1 to the final node 7. 

So, in these test paths I have visited how many nodes? I have visited 5 of my 7 nodes I 

visited nodes 1, 2, 3 4 and 7. What are the node 7 left behind; 5 and 6. So, I have to write 

another test path which includes that. So, again because it is a test path I have to begin 

from an initial state and end in a final state. So, I begin at node 1, then I go to 3, I do not 

want to go to 4 because I have already considered that in my test path; from 3 I go to 5; 

and then I do not want to go to 7 because if I do that then I will miss visiting nodes 6, so 

form 5 I visit node 6. And remember it is a test path so I have to be able to end in a final 

state. So, I come back to 5 and there I do 7, so that is the test path. 

So, just to summarize node coverage test requirements says you visit all the 7 nodes 

which is the set. And what are the test paths that will visit all the 7 nodes there are two 

test paths one which goes like this 1, 2, 3, 4, 7 which leads of nodes 5 and 6. So, I put 

another test path which says 1, 3, 5, 6, 5, 7. So, these two test paths put together satisfy 

this test requirement of node coverage. Similarly on this graph how do I do edge 

coverage? How many edges are there? So many edges are there right; 1, 2; 1, 3; 2, 3; 3, 

4; 4, 7 and so on. 

So, test requirement says you visit all this edges which is the set of all edges in the graph. 

What are the two test paths a very similar to node coverage, because I told you right edge 

coverage also meant to subsume node coverage. So, if I do this test path 1, 2, 3 4 7 I 

visited all the edges that occur on this set. Now, I write another test path that lead covers 



a missing edges which is this 1, 3; 3, 5; 5, 6; 6 5 and so on. So, between these I have 

done edge coverage the next test requirement is edge pair coverage. Edge pair coverage 

list all paths of length 2 which is 1, 2, 3; 1, 3, 4; 1, 3, 5 and so on that put this dot dot dot 

because (Refer Time: 21:19) to list all the edge pairs, but you can finish this its only the 

finite sets slightly larger than edge set that is my TR. 

So, please write path then visit all this path of lengths 2 that would means it will visit all 

these consecutive pairs of edges. So, test paths for these would be if you see 1, 2, 3, 4, 7 

it covers edge pairs that occurs a longest path and then I do 1, 2, 3 4 I forgot this pair so 

2 to a 3 3, 5, so I do a 3, 5 7 which covers all test paths along these lines and then I do 1, 

3, 4, 7 which includes this edge pair. Now I have to include 1, 3, 5, 6 5, 7 which 

completes all the edge pairs that I had. 

So, with this four test paths I can achieve the test requirement for edge pair coverage. 

Now complete path coverage for this graph- please remember this graph as a loop here 

from 5 to 6. So, complete path coverage for this graph test requirement will not stop, it 

will go on listing path, because I have this path it skips the loop, I have this path which 

also skips the loop for then I have take this path which enters the loop. Once the enters 

the loop I have a path that looks like this which visits the loop once. Then I can do the 

same thing again 1, 3, 5, 6, 5, 6 5, 6, 7 and then I can do 1, 3, 5, 6, 5, 6, 5, 6, 5, 6, 7 then I 

can go on writing. 

So, test requirement for complete path coverage for this graph with a loop will be an 

infinite set. So obviously, I am not going to be able to make it feasible or write a test path 

set off test paths that will execute complete path coverage. Its only for completeness we 

really do not consider it is a useful coverage criteria by any means. 
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Now we will see how to overcome this problem about complete path coverage. I have 

this graph with loops; the only where touched upon this loop is to be able to do complete 

path coverage. But then that is not very useful because it gives rights to an infinite 

number of paths. So, is there a mid way solution. So, the question that we want to ask is 

what will be a good motion of specified path coverage in the presence of loops. Now let 

us look at loops assuming that this kind of control flow comes from a loop. When we 

want to test a loop what do we ideally want to test? We say that loops have boundary 

conditions and then they have normal operations. So, when I test a loop maybe I want to 

test around its boundary condition. And let us say the loop is meant to execute 100 times 

it is a far loop for I is equal to 1 to 100. So, I do not want to really execute 100 normal 

executions of the loop. 

So, I want to be able to test the loop for its normal execution maybe once. And then I 

want to be able to test the loop around its boundary conditions. What happens when the 

loop begins what happens when the loop ends? So, when we say we need a set off test 

cases that cover a loop they are looking for the following kind of test cases. When we 

execute the loop at its boundary conditions which will involves skipping the loop also 

and then we execute the loop maybe once or few numbers of times for its normal 

operations. 
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So, the notion of prime paths and prime path coverage help you to achieve this kind of 

execution for loops. So, what a prime paths? Before we look at prime paths I need to tell 

you what a simple path is. So, what is the simple path? A path from a particular node n i 

to another node n j is said to be simple, if no node appears more than once except 

possibly the first and the last node. So, simple path could be cycles, they could begin and 

end in the same node n i and n j could be the same vertex, but in between the path 

nothing appears more than once; which means there are no internal loops in the graph 

and every loop is believe to be a simple path. 

Now, moving on what is a prime path? A prime path is a simple path that does not 

appear as a sub path of any other simple path. Just to repeat; what is a prime path? It is a 

simple path; and what is a second condition second condition says that it is a simple path 

that does not come as a sub path of any other path. 
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So, I will show you an example to make this definition clear. Let us look at this graph, it 

has four nodes: 1, 2, 3 4. How many simple paths are there? If you go and see this listing 

what I have done is I have listed all the simple paths, I have listed them in a particular 

order in fact maybe will begin that this end. This 1, 2, 3 4 if you see right at the end of 

the listed simple paths they are simple path is length 1. 

Later we will move ahead and listed simple paths of lengths 2 which are basically; sorry 

1, 2, 3 4 as simple paths of length 0 they just contains single vertices. Then I have gone 

ahead and listed simple paths of length 1 which as just edges. Then here I have listed 

simple paths of length 2 which are edge pairs like way, and the then I have listed simple 

paths of length 3. 

The other thing to know of this is the graph with four vertices. So, simple path means no 

vertex should be repeated. So, if I have a condition then what is the maximal lengths 

simple path that I can have with four vertices? The maximal length simple path that I can 

have with four vertices should be of length 3, because the moment I increase one more 

edge I am repeating one vertex. 

So, the maximum length that I can get without repeating a vertex with four vertices is of 

length 3. Now if you see, if you look at all these simple path there so many of them I say 

out of all these simple paths only these a prime paths. Why do I say these are prime 

paths? Go back to that definition of prime- path prime path should be simple, prime path 



should not be a sub path of any other path. So, if you take a path that looks like this let us 

take 4, 1, 2 this path; 4, 1, 2. If I take a path like that this 4, 1, 2 path comes in sub path 

of this path here 2, 4, 1, 2 it also comes is sub path of this path here 3, 4, 1, 2. So, 4, 1, 2 

does not qualified to be a prime path. 

Similarly, if I take something like 2, 4; 2, 4 a curses a sub path here 1, 2, 4, it occurs a 

sub path here 2, 4, 1 it occurs as a sub path here, here, here, several places. So, path like 

2, 4 does not qualified to be a prime path. If I go on looking like this I basically eliminate 

all paths of length 0, 1, 2 and 3. And only paths of length four in this case happened to be 

prime paths, because none of these paths of length four occur as sub paths of each other. 

So, this graph has several simple paths, but it has only about eight prime paths. 
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Now, what is prime path coverage? Prime path coverage very simple; the test 

requirement from prime path coverage says- please cover all the prime paths in G. Now, 

to be able to meet this test requirement you need to write a set off test paths that first 

identify the prime paths in C and then cover that. So, in the next lecture I will tell you 

how to do this, what are the algorithms that will do this, but for now we will go ahead 

and see a little bit more about prime paths coverage without worrying about how to do it. 

So, the first thing that I want to tell you is that prime path coverage actually means this 

loop coverage criteria that I told you about; this one test a loop at its boundary and test a 

loop for its normal operation. So, we will understand how that happens. Prime path 



coverage ensures that loops are skipped and executed. And towards all paths of length 0 

and 1 we saw that for that example at least. So, by default it subsumes node and edge 

coverage, because if you see here it includes node coverage and it includes edge 

coverage. 
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This node says that it may or may not subsume edge pair coverage. Why is that so? I will 

show you an example: considered a graph that looks like this, it has three vertices and 

then it is called a self loop here. So, edge pair coverage for this graph requires that the 

self loop needs to be visited. So, edge pair coverage for this graph we will say you visit 

this edge 1, 2 you visit this path of lengths 2 which is 1 to 2 and 2 to itself. But if you 

look at this path 1 to 2; if you see the vertex two repeats here. And that violates the 

condition of it being a prime path. Remember prime path a simple paths no intermediate 

vertices as supposed to repeat then non supposed to have loops. 

So, except for this problem prime path coverage does cover edge pair coverage, but not 

for graphs like this; if a graph looks like this right prime path coverage does cover edge 

pair coverage. But if a graph has a self loop then prime path coverage does not cover 

edge pair coverage. 
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So, now we will move on and understand how prime paths cover the notation of a loop. 

So, we will go back to this example graphs that we looked at a few slides earlier. In this 

example there is this loop here between nodes 5 and 6. And I am not listing the prime 

paths for this graph, but you can take it on faith that this graph has nine prime paths. In 

the next module I will tell you how to list all those nine prime paths. 

So, then if we see this is one prime path; 1, 3 5, 7 because it is a simple path and it does 

not occur as a sub path of any other path. So, this prime path for this particular example 

corresponds to skipping this loop, because a completely avoids this loop and if you see 

here is another prime path 1, 3 5, 6. This prime path gets into the loop it corresponds to 

executing the loop once. 

And then this is another prime path for this example 6 5, 6. Why is this prime path? 

Remember in prime path which have simple path the beginning and ending nodes are 

allowed to repeat, only the intermediate nodes are not allowed to repeat. So, 6, 5, 6 is a 

prime path in what is the main job then 6, 5, 6 is doing for this graph it is executing the 

loop more than once. So, if we see these three prime paths 1, 3, 5, 7 skips the loop 1, 3, 

5, 6 enters the loop and then 6, 5, 6 helps you to execute the loop for its normal 

operations. So, it is intuitively in this sense that prime paths exactly captured loop 

coverage the way we want them to do in test case design. 
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So, one important thing is that I told you right in the next module I tell you how to come 

up with an algorithm that will help us to design test cases that will need the test 

requirement of prime path coverage. But before we do that I will tell you we could have 

some problems. Like for example, you take a graph like this right prime path coverage 

for this graph this is a prime path 1, 2, 3 4 5 this is a prime path. It might so happened 

this graph if this graph corresponds to the control flow graphs is some piece of code here 

is a loop. It might so happen that this code from which this control flow graph is derived 

the loop present at statement number 3 and 6 is such that you can never write you have to 

execute the loop at least once. 

Like for example, if I take a C program. There are two kinds of loop: there is a do while 

and a while do loop right while for while do loop first checks the condition and then 

executes the loop, but if I have a do while loop I have to execute the loop at least once 

before I move on. So, it might be an infeasible test requirement for that kind of a code 

when I say that you achieve this prime path without executing the loop. Why should I not 

execute the loop? Because if I execute the loop then the vertex three which is an 

intermediate vertex in this path will occur more than once. So, it will not be a prime path. 

So, 1, 2, 3, 6, 3, 4, 5 is not a prime path because 3 occurs more than once; 1, 2, 3, 4, 5 is 

a prime path. But to be able to write or test path and executed in the code to achieve 1, 2, 

3, 4, 5 the code might be such that I might have to go through this loop once. Like I told 

you write the code might have a do while statement. 



So, how do we get over this? We get over this by using a notion of a side trip and a 

detour right. So, we will see what they are. 
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So, what is a tour? Tour I introduced you in the last module when we looked at graphs 

tour is a test paths that tours is a sub path if q is a sub path of the overall test path. So, 

what is a tour with a side trip? A tour with a side trip is the following test path p towards 

the sub path q with side trips. If every edge of q is also in p in the same order it is like 

taking a side trip as a part of a main wholly. And what is a tour with the detour a tour 

with a detour is the test path p towards a sub path q with the detour if edges do not come 

in the same order, but vertices come in the same order. 
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So, I will show you an example. So, here is my test path 1, 2, 3, 4, 5. I take the same test 

path with to meet the prime path coverage of 1, 2, 3, 4, 5 with the side trip. So, what do I 

do in the side trip? Side trip says that it is a same path 1, 2, 3, 4, 5, but I do 1, 2, 3 take a 

side trip around 6 come back to 3 and do 4, 5. So, I retain the vertices that come in the 

main path. See side trips says that you retain vertices that come in the same path in the 

same order; retain the vertices 1, 2, 3, 6, 3, 4, 5, but in the main path which is this blue 

dotted line the vertices occur in the same module. 

Now what is a detour? Detour says you retained edges in the same order may or may not 

retained vertices in the same order. So, a detour looks like this 1, 2, 3, 6, 4, 5; it is left 

this edge it does not retained edges in the same order, but it retains this path. So, why do 

I need this? I need this because to be able to achieve this prime path coverage I might 

have to go through the loop. And if I go through the loop the prime paths c is to be at 

prime path. So, I do a small work around then say I actually cover this prime path, but 

with the help of a side trip. Sometimes I am let say I cover this prime path, but with the 

help of a detour. They have just extra additions that we add so as to not to alter the 

notion of prime paths be simple paths, but I still want to be able to achieve these test 

requirements. 
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So, this is what I was telling you about. Some test requirements related to graph coverage 

criteria may be infeasible. In fact, in decidable to check whether even test requirement is 

feasible or not, we want to really go onto its details. But typically when I allow side trips, 

then I might be able to achieve test requirements with reference to a particular code. 

So, what is called a best effort touring is that you tried to satisfy as many test 

requirements is possible without side trips or detours, and then if you still have test 

requirements that are unachievable consider using side trips and detours to be able to 

satisfy them. 
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So, what is a around? A round trip is a prime path that starts and ends in the same node, 

we have seen these, these suggest specific kinds of prime path. What is a simple round 

trip coverage? Test requirement contains one round trip path for each reachable node that 

begins and ends in the same vertex. What is complete round trip coverage? Test 

requirement contains all the round trip paths. So, they subsume edge and node; I mean 

they do not subsume edge pair edge or node coverage. 
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Now to summarize what are the various coverage criteria we saw; we saw node 

coverage, visit every node edge coverage, visit every edge, edge pair coverage visit 

every path of length at most to, visit prime paths means compute on the prime paths right 

test paths that exactly visit every prime paths we will see how to do this in the next 

module. Then complete path coverage which means visit every path in the graph which 

is I believe a useless test requirement. And then we had these two which talk about round 

trips. They are basically prime paths, but begin and end with the same node. 

And why have a put them in the structure? This structure captures how each of them 

subsume the other. We discussed this right edge coverage subsumes node coverage. 

Edge pair coverage subsumes both edge coverage and node coverage. Prime path 

coverage except for graphs with self loops subsume edge pair coverage edge coverage 

and node coverage. Complete path coverage subsumes everything, but is infeasible and 

useless. 

So, what we will see in the next module is how do we look at algorithms that given each 

of these structural coverage test requirements, how do I come up with the test cases. 

Edge, edge pair and node coverage a easy to do, but prime path coverage is a nice 

algorithms. So, we will spend most of the next module looking at these algorithms. 

Thank you. 


