
Software testing
Prof. Meenakshi D’Souza

Department of Computer Science and Engineering
International Institute of Information Technology, Bangalore

Lecture - 55
Testing of Object-Oriented Applications

Hello there, welcome to the first lecture of week 12. If you remember in week 10 I had

thought you about testing web applications and testing object oriented applications.

System level testing of object oriented applications. This was the outline of how I began.

We saw overviews of features of object oriented software, some of which were done in

the middle of the course.

(Refer Slide Time: 00:24)

Then we saw an error overview of all kinds of error is a anomaly is that can occur in a

object oriented software. Especially during integration testing of object oriented systems.

Then in we also saw what is a Yo-yo graph. What I had not done is a part of those

lectures was to do object oriented call coverage criteria specific to integration testing. In

week 11 I decided to drop object oriented testing without doing this and give you an

overview of symbolic and con calling text selection techniques.

Mainly because I wanted that to be a complete set of 5 lectures covering one week’s

details. So, what I will now do is catch up on what I did in week 10 and finish object

oriented testing.

(Refer Slide Time: 01:25)

So, to recap we saw all the features of object oriented software abstraction, inheritance,

polymorphism 2 kinds of inheritance what is the polymorphic method which is the level

of object oriented testing that we are going to do, which is basically interclass and

intraclass testing.

(Refer Slide Time: 01:31)

 (Refer Slide Time: 01:38)

And how to difficult the problem of difficulty in visualising object oriented interactions

in the presence of class hierarchies.

(Refer Slide Time: 01:44)

And overriding methods and polymorphic methods, and we the also saw this Yo-yo

graph which depicts how object oriented interactions occur.

(Refer Slide Time: 01:53)

And in week 10 I had also introduced you to the various kinds of object oriented faults.

(Refer Slide Time: 02:04)

State definition anomaly, state definition inconsistency, state visibility fault all other

kinds of faults.

(Refer Slide Time: 02:18)

And then what I did not do is the last part which dealt with coupling of variable specific

object oriented software.

(Refer Slide Time: 02:21)

How does data flow work in the presence of coupling variables, and what are the object

oriented specific coverage criteria that we would see. So, that is what I am going to do in

today’s lecture. Coupling variable is not a concept that is new for us in the course. We

have seen coupling when we did design integration testing. Coupling variable is a

variable that is used in one and defined in one module and used in the other. But now the

problem is in object oriented software how does a coupling variable occur. They could be

a pair of method calls within the body of method that is being testing. This pair of

method calls can be made through a common instance of an object with respect to set a

variables that are commonly referenced by both the methods. And they consist typically

of at least one coupling parts between the 2 method calls for one state variable.

(Refer Slide Time: 03:36)

So, these represent potential state space interactions between the called methods with

reference to the calling method. So, we have to identify which are the points of

integration and what are the testing requirements in terms of coverage criteria for us to

text on. So, we look at the various kinds of definition use pairs. So, that we have seen till

now. This is one thing that we saw right in the beginning when we did data flow testing

along with graphs within one method or a procedure a, a variable can be defined and

used. So, this is intra procedure or intra method within a method normal kind of

definition use data flow this we saw. When we did data flow coverage criteria during

graph base testing.

The next is inter procedural data flow which is from one procedure a to another

procedure b, a particular definition happens in a and is used in b. If the definition

happens to be the last definition in a and the first use of a particular variable in b, then

such a variable is called a coupling variable and we consider coupling data flow. Now

when it comes to object oriented data flow what we talking about is instances of these a

and b and definitions occurring in the instance of a and in instance of b. This is direct

object oriented coupling. In indirect object oriented coupling what happens there is a

method m, there is another method n, there is a method a that uses m there is method b

that uses n. And the definition and use happens in a and b for an m and n. So, we see an

example where this becomes little more clear.

(Refer Slide Time: 04:59)

So, this is again a recap from the earlier lecture what is the last def for a last definition

the set of notes that define a variable x and has a def clear path from the note through a

call site to a use in other procedure or module. That can be from the caller to a callee or

can be from callee back to the caller in which case it is the value that is returned. What is

the first use? It is a set of nodes a statements that have uses of a particular variable y for

which there is a def clear and a use clear path from the call site to the node that contains

this use.

(Refer Slide Time: 05:42)

This is what we saw a long ago when we did design integration testing. And this if you

remember is a exact recap of a example that I used in the earlier lecture, there is a

procedure f that it some point in it is code calls another procedure g, and it calls g with x

the value that g return is pass to y. So, this statement is what is called the call site.

This the last definition of x that occurred just before this call is the last definition, when

it is passed it becomes the first use and sum calculation happens and the value that is a

returned the statement that this causes the value that to be returned is what is called the

last definition.

(Refer Slide Time: 06:30)

So, this is what we saw as last definition and first use. Now we will see the same

concept, but with reference to object oriented testing. So, to understand that we first need

to understand when we have polymorphic methods, what is a polymorphic call set? So,

here in the presence of the polymorphic methods the first thing to observe is that the

definitions and us for such coupling variables like these can be indirect. So, what do we

mean by indirect? Indirect means you do not know which version will be executed in

which method that is being used. So, in the presence of indirect definitions and uses we

have to consider all the methods that can potentially execute.

So, polymorphic call set is a set of methods that can potentially execute as a result of a

method call through a particular instance context.

(Refer Slide Time: 07:11)

I will illustrated with the example. So, this is a slightly big figure, but will go through it

slowly. On the left hand side is what we have the class hierarchy. There are 4 classes w x

z and y. W has 2 private variables v and u, 3 methods m n and l. X has a variable small x

method n again over ridden. Z has no variables that is matters to us for now. So, we will

ignore the other variables that do not matter to us in z have not depicted it. And z also

has 2 methods m and n, and y has a local private variable w and 2 methods m and l.

Please remember that m occurs here, here and here. And n occurs in w x and z, and l

occurs in w and y. So, here is a typical code that uses this class hierarchy and the

methods from these various classes.

Let us says the code of some client f. So, there is an object o. Let us say now that o is

bound to an instance of the class w for our example in this code. So, what happens now

let see at this point the method m is called and o. M is executed if you go to m m let say

defines a v now remember object is bound to an instance of w. So, it is w definition of v

that is used and past back. And then moving on, so how do I read this figure what is the

legend these white eclipses are method entries these black eclipses are method exists. So,

there are method entries here, here and here for m l and n. There is a main method entry

here and method exit here. These black circle ones are call sites where the method calls

happens and the white circles are when the method finishes executing is the call return.

So, from this figure I hope it will be clear. So, method m is call which defines v and the

value is returned and the method I is called which defines u and then the values returned

and then the method n is called which defines which uses u, and then let us say it also

uses v and it is returned. So, this dotted dashed lines and the solid lines represent the

coupling sequence of variables and the call sites and call returns. This happens for this

class hierarchy when the object o is bound to the class w.

(Refer Slide Time: 09:49)

Let us say an object o is a instead for the same class hierarchy is bound to an instance of

the class z. Then what happens? Right up front when this client call this method I instead

of taking ws definition let us say zs definition of x is taken we are introduced to variable

x that matters to us in z. And then let us say the next call ws definition of u is taken

because n l does not belong to z. And then x is used in z is considered and x is used in z

is again considered here right. So, in which case the problem is because z does not have

an instance of l ws l is considered and it could cause the coupling sequence being

different. There is branching here which did not happened here during the use. When we

come to object oriented coupling what are a testing goals? We want to be able to test the

following.

(Refer Slide Time: 10:40)

We want to test how method can interact with an instance bound to an object o. Like for

an example here an object o is bound to an instance of w the interaction is different from

when an object o is bound to an instance of z. And we need to consider the set of

interactions that can occur what are the types that can be bound to o which are the

methods that can actually executed the presence of polymorphic call sets, and we have to

test all couplings with all the type bindings.

(Refer Slide Time: 11:12)

So, we define 4 coverage criteria. The first one that we will look at is what is called all

coupling sequences abbreviated as ACS, where for every coupling sequence s j in the

particular method f. There is at least one test case t is needs to be written such that there

is a coupling path introduced by S j induced by S j k which is a sub path of the execution

trays of f when it is executed in t. So, what it said is the there is a coupling sequences s j

for example, like this kind of sequence what is coupled with what, what is coupled with

what, what is coupled with what dot every dash line is coupled with the following bold

normal line. So, for every sub sequence in f there is at least one test case that we must

write such that when you execute the test case the coupling parts comes s j k that should

be a sub path of the execution trays when f is executed with t. Which means what? At

least one coupling path must be executed. Let us say there are 3 coupling variables all it

says is that per variable please execute at least one coupling path, no inheritance

polymorphism polymorphic call set if not considered in this coverage criteria.

(Refer Slide Time: 12:26)

The next is all polyclasses abbreviated as APC; here for every coupling sequence s j k in

the methodf that is the same as we saw here. And for every class in the family of types

defined by the context of s j k, there is at least one test case t such that when is executed

on f there is a path in the set of coupling paths that is the sub path of the execution trays

of f of t. So, what is the difference between this and this? This includes all the coupling

variables this includes all the coupling variables in the context of the call that was made

considering the binding also. So, it includes at least one test case for every type the

objective can be bound to. If you go back to the example it will include one test case for

this case when o was bound to z, one test case for this case when o is bound to w. And it

also test with every possible type substitution that can happen; obviously, this is more

effective or it subsumes the all coupling sequences criteria.

So, the next is all coupling defs and uses. So, here what happens? Abbreviated as ACDU,

for every coupling variable v in each coupling pair s j k of a test case t there is a coupling

path introduced by s j k such that p is the sub path of execution trace of f of t for at least

one case t. Which means what? Every last definition of a coupling variable reaches every

first use. So, here it was like at least the first case here it is every. This is again without

inheritance and polymorphism. So obviously, the next one is going to be every last

definition reaching every first used with inheritance and polymorphism.

(Refer Slide Time: 14:11)

And this is the mother of all criteria. It includes polymorphism polymorphic call sets and

it says every coupling variable, every definition to every use has to be covered.

Do not worry about this definition being a long. What it basically says is it says what if I

have a coupling sequence in a function f, then for every class in the family of types

define by the context of s j k consider every coupling variable in that and then consider

the nodes in which the last definition happen and the first use happen you must have a

test case for including that path, that is what it says. So, the simplest to repeat is all

coupling sequences which says at least one coupling path must be executed. The next is

at least one coupling path in the presence of instance contexts and object binding should

be executed. This is every last definition to every first use reachability should be tested

without inheritance and polymorphism.

(Refer Slide Time: 15:35)

This is every last definition to every first use with inheritance and polymorphism and

type binding. So, this is the highest coverage criteria the most difficult to subsume, and

by definition this picture should be very clear. This says that test all coupling sequences

the first one this says with polymorphism this says all definitions and uses, but without

polymorphism this is all definitions uses with polymorphism with object binding. So,

these are the 4 coupling coverage criteria that you can use for integration testing for

object oriented software.

(Refer Slide Time: 16:02)

So, to conclude the object oriented software lecture we understood in week 10, the Yo-yo

graphs in sorry, errors and anomalies in object oriented testing. Today we understood

polymorphic call sets, what are it is definitions and uses of state variables for integration

testing and also looked at various coverage criteria that will detect faults that come

because of object oriented features like inheritance and polymorphism.

So, I hope this lecture is beneficial to you. This will bring us to an end of object oriented

integration testing.

Thank you.

