
Software testing
Prof. Meenakshi D’Souza

Department of Computer Science and Engineering
International Institute of Information Technology, Bangalore

Lecture – 54
DART: Directed Automated Random Testing

 (Refer Slide Time: 00:13)

Welcome back, I am going to finish lecturing about dart with this lecture. Just to recap

what dart is dart stands for directed automated random testing, an independent

standalone unit testing tool for a C program or java program and it basically does

concolic execution, a mix of concrete and symbolic execution. What are the steps that

dart follows? Dart begins by generating a random test input for the given C program, it

does enough work to figure out how to generate the random test input such that the it is a

correct formats in test input for the C program rum the C program on this randomly

generated inputs and collects a few pieces of information.

What does it collect? It collects the details about the path that is randomly generated test

input takes the C program on, it collects all the constraints that the that were encountered

along the path puts them in a stag, along with that whenever a particular constrain that it

is encountering along a path, turns out to be non-linear because it cannot be solve by a

constrain solver, dart also keeps the concrete values substitutes the concrete value, and

raises a flag which says that I am not able to symbolically execute this particular paths.

After it is generated successfully the path constrain for a randomly generated test vector,

dart systematically explores neighboring paths that would have that the program would

have taken. By taking one constrain at a time that it encountered on this random test

vector, which it kept these constraints in a stack. If you remember takes it out of the stack

flips the constrain, which means sorry negates the constraint and explore the neighboring

program path. Once its explored a particular constraint fully, it goes on to the next up

constraint on the program which is below this in the stack, again systematically flips it

keeps doing this. When its able to successfully terminate doing this then dart is done

what is called a reasonably thorough directed search of a program, but at some point if it

encounters an abort statement, then dart is found a bug. So, it will report saying it is

found that and stock, but at some point one of the flags which is all linear all locations

definite turn to be set to be 0 by dart; that means, dart is abnormally terminated.

Another option could be there on a non terminating program dart could run forever. Now

we understand the algorithm for dart, I will tell you how for a program written in a

programming language C, dart will go about interface extraction which it needs to do

because it has to figure out what is an input to a program, and how to give the program

its input, how does it actually do the random test driver, which generates the random

input and how the directed search is implemented.

(Refer Slide Time: 03:02).

So, we will take a small example; here is a small example of a controller that controls the

air conditioning this program is written in c. So, only again as always a program segment

is given here. So, is room hot is an integer variable which is initialize to 0, which means

the room is not hot, is door closed is another integer variable initialize to 0, which means

that the door is open; ac 0 means the ac is off.

So, initially the room is not hot door is not closed or door is open and the ac is off, ac

controller takes as an argument or message which is an integer variable. So, message

could take values 0 1 2 or 3. If message is 0, then what it means is that it sets room hot to

one which means its starts heating up the room if message is 1 then its starts cooling the

room. If message is 2 then what it does is that its closes the door and puts off the ac, if

message is 2 then it opens the door and puts off the ac. If a message is 3 then it closes the

door and if the room is still hot it switches on the ac. And if the room is hot the door is

closed and the ac is not on there is an error in the program; because the doors closed ac is

not on the room is very hot which means the controller is not working. So, it goes into a

state for abort this is like an error state for the ac control.

So, this is the small program which tries to take a message may be through a reader from

a user who has ac as part of the home control system, and tries to do some simple

command.

(Refer Slide Time: 04:44)

We will see how dart will test such a program and successfully ensure that it reaches this

abort statement here. So, now, dart for C, the first step as we told you is to do interface

extraction how does it do that? Now apart from inputs that are initialized by a program

there are there could be other inputs to a program dart first works on identifying them.

How does it identify? It has to identify the external interfaces through which the program

obtains its inputs and these are typically from uninitialized memory locations, because

these are inputs that are not initialized. For a program written in C typical interfaces

could be its external variables its external functions or it could be arguments of a user

specified top level function, which is the function of the program to call to start it is a

execution it could be any of these kinds. These external interfaces are obtained by dart by

statically passing the code of the C program.

(Refer Slide Time: 05:32)

Now, after it passes the code how does it extract the interfaces? The interface extraction

happens as follows inputs to the C program; how are they defined? The inputs are

basically variables in the C program. So, all of them will have memory locations these

memory locations are dynamically initialized, at run time when the program is running

through a static external interface the dart creates.

So, how does dart do that? Its suppose two different ways of mapping inputs to memory

addresses; first way is multiple inputs can be mapped to one memory address m and all

these inputs are obtained by successively reading m during different calls successively to

the top level function. This is standard way in which c works or the same input can be

mapped to different addresses because program could take different executions for

example, the same input could be provided through an address that is dynamically

allocated with a command like malloc anything could happen. For each of these kind of

external interfaces dart determines the type of the input that can be pass through the

program via that interface. So, that it can be generate a random number compactable

with that type. For C type could be a basic type that is supported by C like for example, c

supports integer type, floating point type, character enum and so on it could be a struct

type composed of one or more field of other types, it could be an array of another type a

pointer, it could be any of the standard types that are supported by C.

(Refer Slide Time: 07:06)

Now, what happens after this is yeah. So, dart while it does interface extraction it

distinguishes three different kinds of functions, there are program functions which are

basically functions or procedures that are defined as a part of the program itself, they

could be external functions which have functions controlled by the environment, they are

part of the external interface of the program, but they are not a part of the co program.

So, we cannot presume many things about the value that they would return. They could

non deterministically return any value of the compatible type or in a programming

language like C you could have several library functions, which have functions not

defined in the program, but they are used uncontrolled by the program. So, they

considered a part of it. But because they are library functions dart does not have direct

access to the code of these functions. So, dart still treats these functions as unknown

functions, but they are deterministic deterministic in the sense that I know what a

function does. So, it leads like a black box. So, dart really does not go into the function

code to instrument it or analyze, it its substitutes a value of the compatible type and

moves on. So, for this ac controller program that I showed you in this slide, what are the

inputs; inputs is basically this message which tells you what is the state is that the room

should be maintained in terms of the room being hot or cold, door being open or closed

and ac being on or off. So, that is what happens in the external interface here.

(Refer Slide Time: 08:31)

So, it says. So, this is the random test driver. So, it calls a function main, and it says for i

is equal to 0 to up to the maximum depth, you have a local variable called tmp and you

randomly initialize tmp with this int and call ac controller with this tmp. So, what is this

random in it function do that is what we will try to understand.

(Refer Slide Time: 08:56)

So, the test driver is another C program which performs the random initialization that is

this function random in it. The main function of the test driver initializes all the external

variables and all the arguments to the top level function, by calling this function random

init that what. This main function basically calls the random in it and then calls the

programs top level function. So, we will see random in it in the next slide, the number of

times the top level function is called that is specified by tester. Like for example, this

depth know how many times to call this random initialization you run it once you run it

twice that is up to as, may be its one dart attempted and was not successful. So, you

might want to run it again. So, this depth value is determined by the tester that basically

calls the random init functions as many times as it is needed. This driver also contains

code for simulating each external function, in such that whenever an external function is

called during a program execution random value of the function return type is returned

by the simulated function.

(Refer Slide Time: 10:06)

So, here is how the random code looks like random in it takes an argument m of a

particular type, we do not know what a type could be, it could be anything that is

supported by c it could be any type. So, I have just mentioned it as type left it like this.

So, now we will see what it is. So, if type is actually a pointer to type 2, then what you

do this is basically a random number generator. So, you toss a fair coin and if it turns out

to be head then you say its null otherwise you (Refer Time: 10:35) chunk of memory of

the size of type whatever that size is and you randomly initialize that memory to be

something of this type 2. I hope this is clear right it is just the normal random

initialization procedure, but let say if the type.

(Refer Slide Time: 10:51)

So, this is the type which is a pointer to another type called type 2. So, you do this

randomly allotted memory of the size an initialize it with this one, but if it is a struct type

then what do you do for all fields of f in that struct, you randomly initialize each value

for the field of the appropriate type. If it is an array type let say of some other type if it is

an array of size n of some other type, then you randomly initialize the value of the array

of that same type 3, but if it is a basic type then you generate random bits of that same

type. So, this is basically tells you that random initialization function does a correct

random initialization based on whether the type being a pointer type could be a struct

type could be an array type could be one of the basic types. Whatever it is it correctly

allots a random input of that size that type that is compatible to the correct size.

(Refer Slide Time: 11:49)

Now, after what is random init do it takes a memory location m and a type of the value to

be stored at m as arguments, and initializes m randomly depending on its type that is

what is return here. Takes a memory location m along with its type it initializes them

randomly of this type, if m is a value of basic type. Then the pointed to m is initialized

with auxiliary procedure random bits which is this generate some bits of a compatible

type. If the type is a pointer, then it is a randomly initialized either with an value null or

with a address of a newly allocated memory location this is the one which calls itself

again because it is a recursive call and there is fair coin toss. So, the chances here are 50

50. If the type is struct or array every sub element is initialized recursively the same way

that is what is written here if the type is of struct or the type is a array then you call the

same random init to initialize it till you get to the basic type.

(Refer Slide Time: 12:51)

Now, let us look at the go back to the test driver. So, for each external variable argument

to top level function dart generates a call to the random init in the function of the main

test driver before calling the top level function, that is the part that. We saw till now if the

C program being tested calls an external function let say of something like this let say

some function call it some name, some fun of some return type, then the test driver

generated by dart will also include a definition for that function.

So, it will say this is the return type of this function called some function, inside that the

return type there is a variable called tmp which is of type return type, and the random init

function can be call to initialize tmp and return it. So, what it basically does is that if

there is a particular function, what dart does is basically creates a (Refer Time: 13:42) for

that function, and returns a type that is variable that is compatible type to the actual

variable that the function would return. So, once this test driver has been generated now

we can combine it with a C program to form an self executable program, that is ready for

instrumentation.

(Refer Slide Time: 14:03)

But once it is ready for instrumentation then I will go back for a minutes to the code that

I showed you last time which is basically this.

(Refer Slide Time: 14:16)

So, it sets up symbolic memory it sets up the stack updates the symbolic memory keeps

going updates the stack, and does all the solving the path constraint and then runs the

program.

(Refer Slide Time: 14:20)

Once its runs the program it can return in it can terminate in any of these three values, it

can run forever which is bad it can terminate saying

(Refer Slide Time: 14:24)

I have found a bug which is good because it is able to reach the error statement or it can

systematically explore all the program paths in a program right. So, that is what it does

for C after random initialization.

(Refer Slide Time: 14:49)

So, how does it do the symbolic updation of C? For C it so happens that there is thus

OCAML application called CIL. So, dart uses this for doing parsing an analyzing c code.

So, that it can do the symbolic update or the symbolic sate, the particular constraint

solver that is reported in the dart paper is this solve called IP solve which they use,

basically you could use anything any other interpreter that you will like or any other

constraint solver that you like.

I will update the correct reference that contains this paper of dart which mainly works for

c, and dart is actually now implemented in to a full fledge tool called cute as I told you in

the last lecture I will update a reference for cute I will also put in a reference for a related

open source tool for c called crest. Cute is proprietary, but crest is open source. So, that

you could try out symbolic execution if you want and if you know java if you are

interested in symbolic execution for java there is a tool called j unit j cute sorry which

runs for java, I will upload a document that contains the references to each of these

papers in the announcement section of the course so that you can look at up for further

details. If you have any particular doubts specifically about the crest tool feel free to pin

me because I have used it in tried at out and I might be able to help you with running and

experimenting that tool to do symbolic execution for C programs.

So, I will stop here for now, we are towards the end of the course what I will be doing is

I had asked you all feedback for some topics that you would want me to cover. So, in the

next few lectures that are available I am going to pick a select subset of those topics

especially those that I am familiar with and I will give you introductory modules on each

of those.

Thank you.

