
Software testing
Prof. Meenakshi D’Souza

Department of Computer Science and Engineering
International Institute of Information Technology, Bangalore

Lecture – 53
DART: Directed Automated Random Testing

Hello again, continuing from where we left in the last lecture on DART I had ended with

this explanation where we talked about the execution model of DART, I will begin by

briefly recapping what we ended with in the last lecture.

(Refer Slide Time: 00:27)

We assume for simplicity sakes that every program has only assignment statements or an

f condition which is represented as a conditional statement assignment statement is

represented in the set conditional statements are represented on the set capital C. So,

program execution is a series of assignment statements and condition statements and

always ends with an abort or halt statement execs P can be thought of as an execution

tree that consists of all program executions which we saw an example of when we did

symbolic execution assignment nodes, we will have only one successor because there is

an immediate. Next statement and that is only one conditional nodes will have a branch

out based on whether the conditional is true or false and leaves will all be labeled by

abort or halt.

(Refer Slide Time: 01:14)

So, now we will see how DART symbolically evaluates the expression. So, to

symbolically evaluate the expression, DART maintains what is called a symbolic

memory what is a symbolic memory symbolic memory basically tells you for every

variable which is a memory address and which the variable is stored. So, it maps

memory addresses to expressions for inputs. It is the directly the name of the variable

itself, but remember when we did that example for internal variables other variables, let

us say if you had z is equal to x plus y, then you need to update the value of x by using

an expression for x plus y as x naught plus y naught where x naught is the symbolic

expression for x and y naught is the symbolic expression for y. So, that is what we mean

by a symbolic memory.

Symbolic memory denoted by S is a map from memory addresses to expressions when

the DART algorithms runs it will evaluate symbolic path constrains using the algorithm

when solved the path constraint to get directed generate test cases solving, it will give it

to a third party constraints, all to start with the initial the inputs will all be in S. The

mapping of S is completed by evaluating expressions symbolically. So, for each kind of

expression I will tell you how to symbolically evaluate the expression before we

understand what to how to symbolically evaluate the expressions fairly straightforward

whenever an actual variable comes in the expression you substitute the symbolic variable

instead of the actual variable in the expression, but then ultimately we going to substitute

use these expressions in your path constraints to get give it to a constraint solver that is

where the problem begins I told you constraint solvers cannot handle all kinds of path

constraints because the problem is un decidable in particular constraint solvers cannot

handle path constraints that are not linear let us path constraints of the form 5 x square it

is not equal to 0 3 x cubed is greater than 0.

Any kind of non-linear expression; it is not good at handling. So, DART will remember

this is one of the disadvantages of symbolic testing. So, whenever it encounters a non-

linear path constraint, it drops it in the sense that path constraints become non-linear

algorithm, the DART algorithm; we will directly use the concrete values instead of

symbolic values that is how it that is why DART keeps the concrete value set on.

(Refer Slide Time: 03:50)

So, here is how symbolic evaluation of expressions happen. There is a function called

evaluate symbolic which symbolically evaluates an expression e in the context of a

memory M and already available symbolic expressions capital S. So, what could be

various kinds of expressions if you go back?

(Refer Slide Time: 04:15)

And see the various kinds of expressions could be just a variable a constant arithmetic

expression a relational expression a logical expression or a pointer expression.

So, I have written only multiplication, but as I have told you in the last class, it

represents all arithmetic operators this represent all relational operators, this represents

all logical operators. So, we will do a case by case analysis of how it happens. So, if it is

just a variable, then you directly assign it to the symbolic expression and you return the

updated memory, if it is arithmetic expression which is represented by the star e e prime,

please read the star a standing for plus minus slash mode star; all the arithmetic operators

then it has 2 operands class an expression e and another expression e prime which first

have to be evaluated symbolically themselves. So, e is evaluated symbolically e prime is

a e prime is evaluated symbolically e double prime is evaluated symbolically this is a

recursive call evaluate symbolic a symbolic calls itself.

But now if let us say this is a multiplication operator, right in this particular case. So, if

both x and y are variables; let us f and f prime involve variables, let us say f involves 5 x

y, f double prime f prime involves 5 x and f double involves y then 5 x y will become a

non-linear expression and I just told you the non-linear expressions are difficult to solve

by constraints always. So, DART has this condition, it says that if one of f and f prime is

a not a constant not one of f for a f prime is a constant if one of them is not a constant is I

just told you now you will get a non-linear expressions. So, if both are not constants or

one of them is not to constant, then you say now I have an expression which is not linear.

So, DART keeps a special flag which it calls all linear sets that flag to 0 if it flag to 0

which means what its intuitively saying the DART is encountered an expression that is

non-linear.

So, DART will now do concrete evaluation which is evaluate concrete of that expression,

update the memory and go ahead, I want store the non-linear symbolic expression at all

why will it not store because this no point in storing it, DART knows if the constraint

solvency that it is going to use cannot handle these expressions if both f and f prime are

constants then there is no expression involving variables at all. So, DART does not have

a choice, but to directly evaluated concretely that is what it does here; updates the

memory and goes ahead if one of them is a constant, then what it will do is it will

correctly evaluate that expression and return.

(Refer Slide Time: 07:04)

Now, this is the case the rest of the operators that we saw an expressions where relational

and logical operators the only other expressions was pointer related stuff. So, this is the

second case, if its pointer; if it is the case expression of the form star e prime, then it has

to first symbolically evaluate e prime. So, it calls itself recursively this is a continuation

of this code on the slide if f prime is a constant, if it belongs to the domain of S, then it

returns whatever value that is otherwise it will return point 2 to the memory location, if it

cannot determine either of this, then it will set another flag read it has all locations

definite which means it knows the locations of all the variables in the sense that if there

is a point of pointer that it does not know then it will say there is a location that I do not

know which means it will set this flag all locations definite is to 0.

So, and then it will evaluate the concrete value and go head. So, what is this part then I

am describing in remember just to recap what DART does? It takes a program in writes a

driver instruments it to first generate one random input runs the program on that random

input as the program is running on the random input DART symbolically executes the

program the symbolically execute the program. It has to symbolically evaluate all the

expressions that is the part that I am describing here. So, symbolic evaluation is fairly

straight forward it will keep substituting whatever expressions that it got a normal

variables with symbolic variables that is what this recursive called as it is one more thing

that this pseudo code establishes, it says that if as I am executing, if I encounter an

expression that is likely to be non-linear that is if and symbolically evaluating e prime

and e double prime and one of them after symbolically evaluating turn out to be both

turn out to be non not constants .

Then I will say I have encountered linear expressions. So, I will set this flag all near to 0,

go back and substitute concrete values, I will not evaluated symbolically; not store it in

the path constraint. Otherwise, I will do whatever normally evaluation is. Similarly here

when DART is handling pointer arithmetic, if it encounter a situation where in the

memory address is not correctly known, there a little set to set flag with says all locations

are not definitely known because here it does not evaluate all of them. So, they could see

places where it does not know it, will go ahead and substitute concrete values otherwise

it does normal symbolic execution, why does it do the substitution of concrete values

because by doing this upfront DART will ensure that if the path constraint that it collect

is always solvable by the constraint solver that it is using.

So, this way; it overcomes one of the disadvantages of symbolic testing.

(Refer Slide Time: 10:00)

So, this is the part that I was trying to explain to you in the algorithm that symbolically

evaluate expressions; they were 2 completeness flags the DART kept. One flag was

called all linear which is said to 0 whenever symbolic expressions become non-linear the

next flag all logs definite or all locations definite is said to 0, whenever the value of a

particular variable and hence the memory location of the variable is not known, when

will such a situation arise for example, you could consider a program which dereferences

a pointer whose value depends on input parameters then I will definitely not know the

value of a particular variable right. So, these situations could quite commonly arise.

(Refer Slide Time: 10:43)

Now, let us look at the main algorithm of DART. How does the test driver of DART look

like? So, this is the main program of DART called the test driver or a run DART. So,

what does it do? First it initializes all these Boolean flags to 1, the read; this as shorthand

for saying all linear which is a Boolean variable to be 1 or true all locations definite

which is another Boolean variable is assigned to 1 or true forcing which is another

Boolean variable that I will explain. Now is also assigned to one or true. So, this is

shorthand for 3 assignment statements which assigns 3 different Boolean variables each

of them to the value true then DART goes into which mean loop; what is the main loop?

The main loop is a repeat until loop, it is a repeat until this condition is true which means

what both the flags all linear and all locs definite stay as 1, then you keep on repeating

this loop. The moment one of them become 0, you exit and inside the loop what is

DART? To DART keeps stack, we will see what the stack contains it initializes the stack

to empty, I is the input vector the vector of all inputs it initializes it to empty.

It uses one more Boolean variable called directed which it initializes to one or true and

then it enters a while loop. So, while this directed stands for directed search. So, while I

am doing directed search it has this try catch exception. So, what is try catch exception

do? It some point, this Boolean flag forcing is ever said to one, then DART is already

found an error in the program, it will print this an exit, otherwise DART; we will go on

instrumenting the program here. So, it will call this method called instrument program

with the stack and I. So, is it clear please? What DART does? DART uses 3 Boolean

flags; all of them set to true and it have goes into its main loop until all the path

constraints that its encountering is linear and it knows exactly the locations of all the

variables inside this loop DART will instrument the program and do a directed search.

At any point and time, if DART is found, the bug then DART will say I have found a bug

it will print this message and come out.

(Refer Slide Time: 13:27)

So, this is how the test driver looks like. It combines random testing which is this repeat

loop with directed search which is in a while loop, if the instrumenteds program throws

an exception bug has been found. So, DART will print that message an exit you one of

the completeness flag is being said to 0 means, what DART is encountered a bad

situation it is encountered a non-linear constraint it is encountered place were path

memory of a particular variable is not known its encountered some bad situation.

So, if the directed search terminates then the directed variable, which is this variable of

this inner loop no longer holds, then the outer loop will also terminate provided the

completeness flag still hold that is clear from this code. I hope in this case, DART

terminates and safely reports that all the feasible program paths have been explode, but

in case, one of the completeness flags have been turned off which is this all linear or all

locations definite the outer loop will continues forever. So, they could be 3 options;

DART will explore all possible program path successfully DART will find an error and

stop saying that I found an error or DART can run forever that is not too surprising

because it is a program analysis tools and the problem that is trying to handle which is

exploring all program paths is in general and undeniable problem.

(Refer Slide Time: 14:33)

So, we will now look at this code; what is the code corresponding to instrumented

program in the main test driver of DART looks like. So, here how instrumented program

code looks like it takes a stack and a vector of inputs. So, first it does a random

initialization of uninitialized input parameters in the memory locations. So, it says for

each input x with a I f x uninitialized do random this is the initial random text vector that

DART generates it initializes memory to this value that it is found, it sets up the

symbolic memory which is S sets the initial program goes and says the I have not yet

encountered any path constraint and begins at the first statement.

(Refer Slide Time: 15:27)

And as long as it is not encountering an abort or halt, DART will encounter either an

assignment statement or it will encounter a condition statement because we have

assumed that program execution is a series of I will go back to back that slide first.

We have assume that the program execution is a series of assignments and conditions

ending with an abort or halt. So, that is what this instrumented program does. So, it

accepts the memory. So, in sets, its stat counter to be 0 and then it begins. So, which is as

long as statements are not abort or halt it is either an assignment statement or a condition

statement. So, there is a switch case like. So, S is match to an assignment statement what

will it do? It is already has a symbolic memory uploaded. Here is a new assignment

statement that it is encountered. For example, this could be the case there which says and

z is equal to x plus y. So, the memory location for z which is M needs to be updated with

the expression x naught for x naught plus y naught. So, the memory location for M is

updated after evaluating symbolically the expression e with the memory location capital

M and with the symbolic set of expressions S.

It also needs to evaluate the expression e concretely because you do not know when in

the future, it will have to substitute. So, it will evaluate symbolically, it will evaluate

concretely, it will update the memory location and it says I finished with this statement.

So, we will update the program counter to one.

(Refer Slide Time: 16:56)

So, let us say DART encounters the condition statement if the match happens to be a

condition. So, it says if e then go to l prime then what it will do is that it will evaluate e

symbolically and concretely let us say b is the symbolic result of sym concrete

evaluation of e C is the result of symbolic evaluation of b e if b is true then the then path

is taken by the program if b S false then the l’s path is taken by the program.

So, if b is true, then it already has a path constraint which it has initialized here it will go

ahead and the condition that it got by symbolically evaluating it to the path constraint,

read this as whatever the path constraint that was earlier now C is added to it with an end

and then, it will now put this in this stack saying, I have one more path constraint to

update, I found on the way the program, took a branch, here is a path constraint the

program took a then branch. So, I am putting a one here and adding this constraint to the

stack and it will change the statement to whichever that it has to go to l prime, but

suppose the condition evaluates to falls then to the path constraint it will add negation of

that condition this is path constraint ended with negation of C, it will update it stack by

saying the program took the l’s branch with the 0 and add this to the stack and change the

statement number because it is like skipping.

So, statement number now becomes l plus 1 and it will go ahead and do it is this clear.

So, basically this part what it does is that it grows the path constraint one at a time one at

a time and what is the stack do stack keeps track of which is the path constraint that was

added the latest because that is the path constraint the DART is going to flip to be able to

get the next execution of the program that is what DART does here right, it will flip it in

the in the main thing when it does the next execution of the program.

(Refer Slide Time: 18:55)

So, if S is an abort or halt if S is an abort then DART raises an exception, if S is a halt

then it just re-directly calls the constraint solver with the path constraint that it is

collected as it takes it from the stack now need this it use this routine called compare and

update stack what is that do that tells you how to update the stack here is the code for

that.

(Refer Slide Time: 19:06)

So, stack has a maximum capacity this part says as long as if not reached the maximum

capacity if the stack branch is not equal to branch then there is a problem four set forcing

to 0 and raise an exception where is this Boolean variable forcing it was yeah. So, if

forcing say ever set, then you can say bug is found l’s is stack. This; like this then you go

ahead and normally update the stack branch you say you to remove it from the stack

profit off and then add this, this is clearly this normally just the normal stack operations

that you are doing right solve path constraint which is what it calls here right solve path

constraint what is that look like.

(Refer Slide Time: 19:58)

That will basically call a constraint solver which is third party constraints off. So, what it

does is that it takes the latest path constraint from latest thing from the stack and its says

if j is minus 1, then I finish my search it terminated normally otherwise says do take this

whatever path constraint that you found at the top of the stack negate that path constraint

added to the branch now you call it again. So, that it explores the other search if this is

the part that forces start to do the directed search this is an explanation of what the

instrumented program does each run of the instrumented program the first one does a

random search.

(Refer Slide Time: 20:32)

So, except for the first one each run of the instrumented program, how is it executed, you

have a stack of all the conditions that you encountered in the path in the previous run. So,

we record a branch value and a done value branch value is 1, as I told you when the then

part is true or the condition is true and branch value is 0 if the condition is false done

value 0 only when the branch of the condition is executed in the prior runs which means

I have explored this part already.

So, then you said the harmfully done with this program constraint information associated

with each conditional statement of the last execution path is stored in a variable called

stack which is what we have been looking at and that is kept in a file that shared between

executions and then at any point in time the whatever is available at the top of the stack

is pulled flipped and that is the alternate path the DART tries to take.

(Refer Slide Time: 21:40)

So, if it explored both the options, then it such the done value to 0 removes it from the

stack and takes the next available condition instrumented program what is it do? It

basically executes the original program interleaved with a gathering of symbolic

constraints at each conditional statement, it checks the; it calls this compare and update

stack routine, it checks whether the current execution path matches the one that it

predicted at the end of the earlier execution and if it is then he does not repeat, but if it

not then it explores this new execution path, but if some problem happens then it sets the

flag forcing to 0 and basically then it will restart this run DART which is the main test

driver with another fresh randomly generated input.

When will the sourcing be said to 0 that can be only due to a previous incompleteness

and darts directed search it went along a path that it could not complete.

(Refer Slide Time: 22:29)

So, it will start all over again. So, when the original program halts, new input values are

generated from the solve path constraint routine that will attempt to force the next run to

execute, the last unexplored branch of the stack such a branch exists, then it is a explored

otherwise, it removes it from the stack can goes to the next path constraint that it was

first.

(Refer Slide Time: 22:48)

So, I hope the code for DART is clear. So, the main code for DART is the test driver

which does one random search followed by a program instrumentation which

symbolically executes a program, collects the path constraint and does a directed search.

This was the code for that which tells you; how to symbolically update and execute a

program. It needs a stack to be able to keep track of the path constraints this is a update

this is the routine method that maintains the stack, this is the routine that calls the

constraint solver and DART could as I told you have 3 outcomes.

So, here is the main theorem that talks about the correctness of DART, if DART runs if

DART at any point and time says this print bug found, then there is some input to be that

leads to an abort state, it is really found an error if run DART terminates without printing

bug found, then which means or DART is explored all the execution paths of P otherwise

run DART will run forever somebody has to manually go on about it the third part is an

undesirable behavior of dart.

(Refer Slide Time: 23:59)

Which we cannot avoid because the underlying problem is undesirable what will do next

time is I will explain how DART works for C by using an example and tell you; how

these interface extraction test driver extraction undirected search implementation actually

happens through an example. So, we will stop with this one now.

Thank you.

