
Software testing
Prof. Meenakshi D’Souza

Department of Computer Science and Engineering
International Institute of Information Technology, Bangalore

Lecture – 52
DART: Directed Automated Random Testing

Hello again, we are going to continue with viewing symbolic testing techniques; last

class I told you about symbolic testing, then we moved on and looked at the

disadvantages of symbolic testing. One of the biggest disadvantages is the solving the

path constraint, if I collect a set of path the constraints, I may not be able to solve it

because satisfiability problem is in general un-decidable, the current day solver that solve

these path constraints can handle linear path constraints very well. But let us say if you

had something like x squared greater than 0 or log squared x greater than 0 which we

could encounter while writing code; then the solutions to these become difficult. As a

solution, we presented a hybrid symbolic testing technique called concolic testing con

colic; a short form for concrete plus symbolic and as I told you, it does both concrete and

symbolic execution together.

So, today; what I am going to tell you is one particular concolic testing tool called DART

stands for directed automated random testing. We will look at this algorithm that DART

deploy is to do test case generation using symbolic testing, in detail, we will do it over 3

lectures. In this lecture, I will introduce you to DART will get started on what exactly art

does and will look at a mix of concrete and symbolic execution and dart. In the next

lecture, I will walk you through the precise algorithm that DART deploy is to instrument

a program and to write the test driver in the last lecture on the DART which will be the

third lecture. From now, we will look at an example C program where a tool like DART

can be applied to do concolic testing.

(Refer Slide Time: 01:59)

So, what is DART? DART is basically a testing technique or an algorithm that applies to

unit testing phase. Let us say you have a fairly large piece of code and you are the

developer or the programmer; you have been asked to unit test the code, we have seen

several testing techniques to do unit test the code, but let us say; you are unable to

generate graph models or logic models and you have a fairly large piece of code. Let us

say a few 100-1000 lines of code with you to test typically as a unit tester. The burden

will be on you to write the test driver to instrument the program for which they may or

may not be time left. So, typically unit testers resort to what is called random testing

which is they generate a randomly generated test vector a few of them, run the program

on it if they are lucky, they might find an error, but if they are not lucky then they may

not find an error.

So, what we will see today is a tool called DART which will let you do unit testing in a

reasonably automatic way do not have to write drivers; do not have to instrument, the

program yourself; DART will do it all on its own. We will see DART as it applies for C,

but these days DART like tools are available for java, for dot net and for several other

frame works as I told you. So, what is DART? Do DART follows concolic testing which

means, it does both symbolic execution and concrete execution and the advantage of

DART is that it can be used to explore all feasible program paths which means it can be

done to do; what is called exploratory; all combinations paths testing. We have seen

when we did graph based testing that all complete path coverage is infeasible several

times. So, DART also may not be able to achieve complete path coverage, but it will do.

So, whenever it can and we will see when it can and when it cannot.

(Refer Slide Time: 03:54)

So, what does DART do? DART uses basically 3 main techniques to do its directed

automated random testing. So, what are the 3 techniques that DART uses? DART as I

told you; you just give it an executable program, DART will write the driver for your

instrument, the program run it and tell you whether it is found an error explored all paths

or it is unable to do either of these. It will do all these automatically. So, to or do all this

automatically, DART uses 3 techniques, T automate unit testing, first that it does is that it

extracts the interface of a program with its external environment, automatically what do

we mean by extracting an interface of a program with its external environment, A

program might take input from the user, program might send outputs to the console

program might read data from a database.

So, all these things which the program talks to or interfaces which are called external

interfaces, DART first does static source code parsing and automatically extracts these

interfaces of a program and then what does DART does is it does writes the test driver.

What is a test driver? If you remember from our lessons and integration testing, it is a

program that takes and executes your main program under test, DART generates the test

driver automatically for this interface which is basically the interface that executes the

program supplies it inputs and what is the main job of the test driver generated by DART.

It is a randomly test a program; randomly test a program means to give random inputs to

the program in test, we will see what it means very soon and finally, what is DART do?

DART dynamically analyzes; how the program behaves under this random testing that

was done with to start with in step 2 and then by systematically manipulating the

behavior of the program under the random test, DART will generate new inputs to direct

the program for specific program paths.

So, let me repeat the 3 steps of DART. The first step is it figures out automatically what

are the interfaces the program has; after it does that; DART writes a test driver, again

automatically that picks up random test case from the interface and starts executing the

program on the random test case. As the program executes the random test case, DARTs

collects a few pieces of information, using that pieces of information, DART will now

generate newer and newer inputs that will systematically explore the program on paths;

around the paths that the program too on the random tests case.

(Refer Slide Time: 06:43)

So, before we move on and understand DART; what are the strengths of DART because

DART does this interface extraction and driver writing automatically; the user or the

tester does not have to write the test driver and the harness code to stimulate the external

environment of a software application and because of that testing can be done completely

automatically on any program that complies, we will do it for C through an example and

DART can detect several standard errors like program crashes that happen because of

errors like division by 0 violations of assertions presence of non terminating loops and so

on.

(Refer Slide Time: 07:21)

So, before we understand DART, let me revisit the example that I had presented to you

towards the end of last lecture, here is a function h, h takes 2 arguments; integer

arguments x and y and returns an integer, it has 2 if statements inside; it first one says if

x is not equal to y, you go to the second, if statement second; if statement calls a function

f; function f code is given here above function f basically takes an argument x and

returns 2 x. So, it says if f of x is equal to x plus 10 which means if 2 x is equal to x plus

10, then read it as that this program for h has reached an error state. So, there is a word

called abort and it returns 0.

So, now let us say; this is written by a particular developer and his or her job is to unit

test this code. So, typically developer will resort to random testing. Let us assume that

because the code is fairly large in this case; obviously, it is not a large example, but let us

say that assume that the developer has a large code; he or she will resort to random

testing. Random testing means what generate random values of inputs for x and y. Let us

say you generate some value x is 25, y is 35, something like that; now where is the error

in the program the error is in the program is here nested inside the 2, if statements the

conditions for both the; if should pass for me to be able to reach error using a randomly

generated input with high probability I will definitely pass the first if condition. It is

unlikely that the 2 randomly generated inputs x and y will turn out to be the same.

So, they will most likely be different. So, I will pass the first if condition, but the second

if condition is very specific. It says f of x which is 2 x is x plus 10, then the second if

condition passes it is not very likely that the randomly generated input will pass the

second condition. So, no matter; how many times you randomly generate an input and

test a program you might not hit the error statement which is present here. In the

program, we will see how DART will through one random generation of test case will

systematically hit the error statement in the program.

(Refer Slide Time: 09:36)

So, as I told you, this example program illustrates a typical problem with random testing

the function h is considered to be defective because it leads to an error for some input

values of x and y. In particular, x should not be equal to y and f of x should be equal to x

plus 10; that is when the input it is an error running a program with random values for x

and y is highly unlikely to find the error because the inner if condition is highly unlikely

to evaluate true for random values of x and y.

(Refer Slide Time: 10:05)

So, how will DART now find the error? What are the 3 steps of DART? Figure out the

interface of the program begin, generate a random input to the program run the program

on it, collect some details, then systematically manipulate the details that you have

corrected to direct the program on specific program paths. So, DART will begin by

generating a random value let us say it guesses 354 for x and some 34567 for y some

values. Now what will happen then in this code it will; obviously, pass the first if

statement because x is not equal to y, it will go, it will fail the second if statement

because 2 x is not equal to y plus 20. So, DART will say that the first if statement is

passed the then branch of the second if statement was not taken.

So, the error is not encountered, this is a normal execution intertwined with normal

execution DART also does extra book keeping, one of the book keeping it does is to

collect the predicates that evaluated to true and the predicates that evaluated to false for

this randomly generated test input; the first predicate x e not equal to y evaluated to true.

So, if DART remembers; this it does not remember; it as x not equal to y, it remembers it

as x naught not equal to y naught; what is this x naught and what is this y naught; they

are symbolic inputs representing x and y and then the second path constraint is 2 x

naught which is f which is actually going to the function f, says compute 2 x. So, you

substitute it back here x is symbolically represented by x naught. So, you get 2 x naught

is the same as x naught plus 10 as I told you x naught and y naught are symbolic

variables that represent the value of the memory locations corresponding to the values of

the variables x and y.

So, this will give you a clue of what symbolic representation is it to represent x

symbolically give a name to the memory location of x to represent y symbolically give a

name to the memory location of y in this case we have given symbolic value for x is x

naught symbolic value for y is y naught. Now another thing to note is that how did this

path expression come if you go back to the code this path expression came from if

condition this if condition actually had f of x; that means, that DART had to go to the

code corresponding to f understand that f of x is 2 into x substitute it back here and then

say this is the constraint. So, this comment here just says that it says that the path

expression 2 x naught in this predicate is formed through as interprocedural dynamic

tracing of symbolic expression because from h, the control gets transferred to the

function f from where you understand that it is 2 x and then you substitute it back DART

can do this automatically is what is being said.

(Refer Slide Time: 13:02)

Now, DART is done one random generation of a test vector for x and y collected, these

symbolic constraints now DART wants to explore. So, this means what the program for

this randomly generated input for x and y has taken one particular execution path now

DART wants to systematically explore the neighborhood of this execution path. So, what

it will do is it will do what is called a directed search. So, what it starts with the

execution of the program on the random input and calculates an input vector for next

execution how does it do as I told you when the program runs on the random input

DART collects these path constraints, right. So, what it will do is that it will keep these

paths constraints let us say in a stack the first constraint is this the second constraint is

this; this constraint passed this constraint failed it will keep that information.

Now, DART wants to explore the neighborhood for this randomly generated input the

second condition failed. So, now, what it will try to do? It will try to negate the second

condition that failed which means it will try to make the second condition pass. So, it

will generate a path constraint which will negate the second this thing and it will give it

to a constraint solver the constraint solver will give input values for x and y that will

satisfy the first constraint and that will satisfy the second constraint.

(Refer Slide Time: 14:30)

So, that is what is written here for the example path on the random input these were the

constraints that were satisfied x naught is not equal to y naught, I mean not satisfied

sorry, generated x naught is not equal to y naught and 2 x naught is not equal to x naught

plus 10. Now what DART will do it will take the second path predicate and negate it

which means they did it will get 2 x naught equal to x naught plus 10 and what it will do

is it will try to give this as a path constraint to a constraint solver and ask the constraint

solver to give it values for x naught and y naught that will satisfy this constraint solver

could give a value something like this.

Let us say it is say x naught is 10 y naught is something and now it will check x naught is

not equal to y naught, correct 2 x naught is x naught plus 10 both conditions pass. So,

which means what both ifs pass the program is reached the error statement, this is; how

DART goes about systematically exploring neighboring program paths and in the process

if it reaches an error statement it stops and says I have found the error in the program.

(Refer Slide Time: 15:31)

So, that was DART through an example as I told you our goal is to understand DART in

detail. So, what are the pieces that we are going to understand? These are the questions

that we will try to answer in this lecture and partly in the next lecture. We will

understand how DART defines symbolic variables for a given program for this example,

we will understand how DART came up with x naught y naught; how did it do it? The

second is how does DART define path constraints over the symbolic inputs while it

executes the program on a random input which means what here, it executed a program

on a random input and it generated these 2 path constraints corresponding to the path

taken by the program on the random input how does DART do that this toy example did

not have much features.

But I my claim is DART will work on arbitrary C programs which means what they

could have branching looping if they could have function calls which we already saw in

this example they could have pointers and so on. So, DART is should be able to generate

these path constraints in the presence of all these entities and the next part is how does it

flip one of the conditions in the path constraint flipping means; how does it negate one of

the conditions in the path constraints; how does it give it to a constraint solver get a

solution and then run the program again on that solution and how do you know that

DART is actually executing a different run. So, these are the kind of questions that we

will understand in detail.

(Refer Slide Time: 17:11)

So, before for us to be able to understand in detail, we need to understand what the

execution model of DART is which means how does DART go about doing interface

extraction instrumentation writing or driver; how does DART do this; remember one

thing, DART executes a program both concretely or normally and symbolically, while

executing a program symbolically DART collects the symbolic path constraints and

solves these constraints by using a constraint solver as a black box. For normal

execution, it just records the values of the variables that were defined as the program

executes. Now it has to execute both symbolically and normally; this side by side

execution of a program demands that DART work instrument the program at the level of

a RAM machine which means what we are going to assume that the program is actually

residing on a particular architecture of a RAM and look at how the program will look

like as its residing in memory.

(Refer Slide Time: 18:16)

Will understand various bits and pieces of DART, if you focus on the title slide; first

thing I am going to understand is symbolic variables what are symbolic variables in the

execution model of DART will understand the semantics of a program after that in the

execution model of a star DART followed by understanding of statement labels concrete

semantics inputs and program execution.

(Refer Slide Time: 18:30)

(Refer Slide Time: 18:35)

So, these are the bits and pieces with which we will understand the execution model of

dart.

(Refer Slide Time: 18:43)

We begin with symbolic variables; as I told you; what are symbolic variables? Symbolic

variables are place holders for actual values of a variable in a program as it runs in a real

environment which is the best entity to represent a place holder. The best entity to

represent a place holder is the actual memory location, let us say there are 2 variables as

we saw in the example x and y; the symbolic representation of x is the memory location

for x, the symbolic representation of y is the memory location for y. So, first we need to

understand how memory looks like; let us say you have a 32 bit processor or a 64 bit

processor or a 128 bit processor then what is memory? Memory for a 32 bit processor

can be thought of as a mapping from memory addresses call it M to 32 bit words; what is

plus denote, it denotes that the memory is updated for example, suppose I write

something like this it means that m prime is the same as memory m except that the

memory location small m is updated with the value for V.

Otherwise all other memory locations in m prime capital m prime are the same as that of

M what symbolic variables are as I told you symbolic variables are defined by their

addresses. Now in an expression, M will denote either a memory address or a symbolic

variable identified by that address depending on the context as we move on, this will

become clear. Now what is a symbolic expression? Symbolic expression is the same as

our arithmetic and logical expressions as we saw in the last lecture, but instead of

working over normal variables, it works over symbolic variables. So, symbolic

expressions could just be variable names which have memory locations for us, it could

be a constant which is also another memory location, it could be a arithmetic expression.

Please read this star e; e prime within brackets multiplication as any arithmetic

expression.

So, it could be plus; it could be minus, it could be slash, it could be mod for the sake of

simplicity, only star is multiplied, but this is to be read and understood as a generic

instantiation of any arithmetic expression similarly this less than or equal to e e prime

should be read and understood as a generic instantiation of any relational operator which

compares 2 expressions 2 variables e and e do, it could be less than or equal to greater

than or equal to not equal to strictly less than strictly greater than and so on, again this

not e prime negation of e prime is to be interpreted as representing one instances of a

logical operator can be substituted with any logical operator and because we are using it

for C we also work with pointers the star e prime.

So, this star is a binary star which is multiplication. This star is a unary star which

reference to which refers to pointer dereferencing. So, basically symbolic expression is a

lot like our arithmetic logical relational expression; instead of working over normal

variables, it works over symbolic variables. So, it has constants, it has symbolic variables

which are represented by memory location, it has addition subtraction multiplication

division mod, it has all the relational operators, all the logical operators and operators

dealing with pointer arithmetic we assume that expressions have no side effects.

Now, the semantics of a program typically when we look at program, we understand

what is the semantics of a program. What is the state of a program? State of a program is

the values of all variables in the program plus a location counter which tells you which is

the statement that the program is executing. So, that is usually given in this transition

system where a state represents as I told you a tuple of all the values of a program and

variable in a program counter and transition means what one statement executes and the

transition tells you; how one state changes to another state; which value of a variable

changes to which other value.

So, each execution of a program results in a path to this through this transition system,

but please remember because we are working with DART and DART needs to both

concretely and symbolically execute a program, we need to define the semantics of a

program at the level of a memory which means what we define it; similar to statement,

the semantics that is given up here, but we say statements are nothing, but simple

machine instructions because that is what happens at the level of a memory.

So, how are statement labels denoted? We take directly the instruction addresses that are

available in our computer architecture and say those are the set of statement labels. So, if

l is the address of a statement, let us say a statement label then n plus 1 is also an address

of a statement as I told you DART is meant to work on our all C programs, but for the

purpose of illustrating the algorithm of DART; what the authors of the paper do is

consider restricted syntax.

So, what they say is that for now simplicity assume that program has only the following

condition kinds of statements, it has conditional statement called C which is like a typical

if statement if an expression evaluates to true then go to a particular statement l prime

where e is a symbolic expression and l is a label of a statement we also assume that in

our restricted syntax a program has only assignment statements which assigns an

expression to a memory address and in addition to this the program has a special

statement called abort which we saw in our example and another statement called halt

which nor corresponds to normal program execution all other statements that you will

typically find in programming languages like while anything else can be expressed using

these.

So, for simplicity we assume that as far as understanding the execution of DART is

concerned DART has only the programming language like C on which DART works has

only condition statements assignment statements and special statements like abort and

halt and we also assume that there is a special function that is available to us let us call it

statement act l m which specifies what is the next statement to be executed.

(Refer Slide Time: 25:12)

Now, concrete semantics of DART; what will it do? It will directly give you the actual

value that is stored in the memory location corresponding to every variable. For example,

for an assignment function, this function will calculate this evaluate concrete which

evaluates the concrete semantics will calculate using some address arithmetic; the

address of the left hand side where the result is to be stored.

(Refer Slide Time: 25:33)

What are the inputs to DART? Inputs to DART are the memory locations corresponding

to the variables symbolic variables that actually correspond to the input vector associates

a value to each input parameters hence defines an initial value of memory. So, we

assume as I told you for simplicity that a program has only conditional statements and

only assignment statements. So, program execution will be a series of assignment

statements and conditional statements written as a union C; any number of them which is

written using the regular expression star and the program can either abnormally halt with

an abort or normally halt with a halt. So, read it like you would read a regular expression,

they could be assignments, they could be conditions star means any combinations of

them, any number of them, this represents the program ending abort represents the

program ending abnormally halt represents the program ending normally.

So, to further simplify and understand our model we can assume without loss of

generality that program execution looks like this it has a series of assignment statements

followed by a condition followed by another series of assignment statements followed by

a condition and. So, on basically what it say is assignment statements and conditions

could alternate these alpha ies are assignment statements they belong to a star they could

be no alpha IES, C IES are conditionals and then the program always ends with an abort

or a halt s belongs to abort or a halt.

So, this is how a program execution looks like and whenever a program executes.

(Refer Slide Time: 27:07)

There is one path, in the execution tree that the thing takes. So, I will stop here in the

lecture. I will continue with how DART evaluates each of these expressions

symbolically.

Thank you.

