
Software testing
Prof. Meenakshi D’Souza

Department of Computer Science and Engineering
International Institute of Information Technology, Bangalore

Lecture – 51
Symbolic Testing

Hello again, I will continue with the symbolic execution, if you remember in the last

class, I had introduced symbolic execution to you shown you a couple of examples and

given you an overview of the technique what I am going to do now is to continue with it

we look at the third example.

(Refer Slide Time: 00:20)

So, here is another program; this time this program has a loop and the idea is to

understand how symbolic execution works on programs that have loops.

(Refer Slide Time: 00:28)

So, here is a piece of code is named as test me infinite inf short for infinite do not worry

too much about the name; let us understand what the program does, it has an internal

variable called sum which is an integer type initially assigned to 0, then it takes as

another variable which is of type integer called capital N, how does it take it as; it takes it

as input, it takes it as symbolic input which means what you take it as a symbolic input

eventually substitute it with concrete value and then the program has piece of code.

What does that code do? It has a while loop which says as long as the input that you have

read of integer type is an input greater than 0, you keep adding it to the sum that you

have collected till now and take the next input, if you happened to get an input that is less

than or equal to 0, then this while loop gets aborted otherwise; this program this while

loop will run for ever as long as somebody gives it positive inputs. So, that is why this is

called infinite. So, this program has a problem. The problem is this program the loop in

the program could be non-terminating and the whether the loop terminates or not is fully

based on the next input that the user gives, I want to show a flag, this is a potential error

in the program because it has an input statement inside the while loop, it can go on

running as long as the condition of the while loop passes.

What is the condition of the while loop condition of the while loop just says that the

input that you have read just now is it greater than 0 or not. So, this program will go on

running as long as somebody gives it positive inputs, I want to use symbolic testing to

identify this as a problem with the program and tell the user that there is a problem, how

will I do that if you remember the steps of symbolic testing; what are the steps instead of

giving concrete vales to inputs give symbolic values for every internal variable, collect a

symbolic expression which is basically substitute the value of the input that comes in the

expression with its symbolic value collect path constraints that it will tell you about the

decision statements in the program; if the decision statements were simple if statements

like the once; we saw earlier there would have been no problems here the decision

statement, in this program is a while statement and it is a while statement which says N

greater than 0.

Now, you could go by the previous times example and say that the path constraint will be

symbolic value of N greater than 0, but then just that is the path constraint does not tell

you; when this while loop is going to stop, you also remember, you also have to give a

negation of the path constraint for every path constraint that you encounter is the

decision statement or if of an; if for a while, you have to be able to give its negation also;

what is negation of N greater than or 0 that is N less than or equal to 0 and how will I

give it as a path constraint for this because it is a while loop it has to run for one or more

iterations. In fact, it runs as long as N is greater than 0 and when N is less than or equal

to 0 it will stop running is that clear that is what I specify in the path constraint.

This is what I was trying to explain it to you; I will go through this slide.

(Refer Slide Time: 04:05)

Now, the loop in the example that we are seeing in this slide; example 3 has infinite

number of execution paths as I told you where each execution paths is a sequence of

arbitrary number of trues followed by a false, when it stops or it can go on as a sequence

of infinite number of trues. So, the path constraint for a loop with the sequence of N trues

where N is unknown it completely dependence small N is completely dependent on the

user this while loop let us say the user tries to give positive values of N first 3 times

fourth input that he gives is negative the while loop will stop.

Let us say the user tries to give positive values of N 100 times 100 and first input this

gives is negative then, 100 and after 100 iterations the while loop will stop user could

decide to give first 10,000 values as positive and then 10,001 th value as negative; the

while loop will run till then user continuously gives positive values while loop will go on

running that what is captured here, it says that there is some N whose value, I do not

know and the path constraint says till that value of N that is for I is equal to one to small

N all the numbers that I get capital N i’s are greater than 0 and after this N there is a N

plus 1 th value which is less than or equal to 0.

This N may or may not exists if this then does not exists means what for no N; N plus 1

is less than or equal to 0 means for every N and I will be greater than 0 which means the

while loop can go on executing that it captures that succinctly and what will happen after

at each step of the execution sum gets assigned to sum plus that value of N i and the new

input of N i is read that is what is represented here sigma which represented the symbolic

state which I had explained in the previous lecture looks like this.

There are 2 variables in the program capital N and sum capital N will stop when the

program go at the end of execution when the program gets N plus 1 and what will sum

be sum will be the summation of all the inputs that you have read till now. So, in general

by using this example, what have we learnt; if I am doing a symbolic execution of a code

that contains loops or recursion; recursion I have not shown you, but that holds for

recursion also it might result in an infinite number of the paths, if the termination

condition for the loop is such that it is also symbolic for these kind of things, usually

what people do is that they put a time out they wait and then they say, no, there is a

problem with the program.

I am doing this for too long, then they go and look at it and abort or they limit the

number of paths loop iterations or the exploration depth. So, this is how you collect

symbolic constraints for loops. So, symbolic constraints for loop will have a particular

number of iterations where the path constraint for the loop turns out to be true and then

after the specified number of iterations the path constraint will be false.

In this case why I showed you this example directly is that in this case, the next iteration

of the loop is dependent on the structure of the loop. This is particularly problematic

case. So, I do not know whether I can stop it after a finite number of iterations or not or I

do not know whether that small n will exists or not; that is the case, then symbolic

execution may or may not terminate and that truly reflects the problem in this program

also because concrete execution of this program also may or may not terminate it will not

terminate if a user continuously gives positive values it will terminate, if the user

eventually gives a 0 or a negative value.

(Refer Slide Time: 08:14)

So, now what is the biggest problem with the symbolic execution? Niggest problem with

symbol when the symbolic execution end when we are able to solve the path constraint

and collect a set of test cases in the case of this example, this was the path constraint to

be solved. What is this path constraint solving means find some N such that you give the

first N values as numbers that are positive and N plus 1th value as numbers that is less

than or equal to 0, we can always find like this as I told you the small n could be 100;

whatever it will be satisfied; what was the path constraint for this one for this piece of

program that was given here, right, 3 path constraints was there one first if statement

negating to be false and the second one was first and second; if statement both were true

first if statement was true, second if statement was false, all the cases these path

constraints have to be automatically solved. These were small programs that I told you

for illustrative purposes, but for large program imagine a large program with 10000 lines

of code several different if statements and you symbolically execute you collect a large

constraint.

So, you have to give it to a constraint solver expect the constraint solver to be able to

solve the path constraint for you, as I told you solving path constraints means looking at

satisfiability problem in logic, if you remember in the lecture on logic that I did towards

the first half of the course where before we began logic based testing, I had told you that

satisfiability problem is a hard problem; even for elementary logic like propositional

logic, there no known polynomial time algorithm for solving satisfiability or in other

words satisfiability problem for this is N P complete we are not even talking about

propositional logic, we are talking about predicate logic which means if there are

variables that are of type integers that are not always Boolean satisfiability problem for

predicate logic or first order logic is un-decidable.

Which means there is no algorithm to do satisfiability, but there are lots of so called

constraint solvers which use exclusively designed heuristic based techniques to do

satisfiability I will point you to references a couple of them towards the end of this

course. So, suppose you get a path constraint and you are able to solve it using a

constraint solver then well and good, you can do symbolic execution and drive the

program towards the desired paths that you need or cover all the paths in the program,

but let us say you are able to not solve the path constraint and get a collection of inputs

then there is a problem symbolic execution may not be useful.

Why will you not be able to solve a path constraint because there could be functions like

f of x is less than or equal to 0.5 and you may not have the code corresponding to f of x

or let us say in a programming language like C, if you include the math dot H library,

you can write things like if log x is less than 0.005 then you do something things like log

may not be efficiently computable by consultant constraint solvers.

So, there could be several different reasons why arbitrary functions and predicates cannot

be computed. So, if one such problem exists and constraints always say, I am not able to

solve then symbolic execution is not particularly feasible for that. In fact, this is

considered to be one of the key disadvantages of using symbolic testing.

(Refer Slide Time: 11:47)

So, to summarize all the disadvantages of symbolic testing, the PC or the path constraint

as I told you just now generated during symbolic execution may not be solvable by any

constraint solver then you are stuck you can never get test cases, why will it not be

solvable because the underlying program could use a function whose code is not

available then how will you know what f of x computes. This is very common when you

are using web applications and all you might use functions whose code is not available

and as I told you many real life programs which have a few million lines of code have

several different program paths.

So, as you go on symbolically executing a program there could be several decision

statements and you might end up collecting a really long path constraint which is very

difficult to solve it is so long. It has so many variables that several constraint solvers

might not find it feasible to be able to solve in which case exploring all paths may not be

feasible. In fact, symbolic execution was first introduced in the year 1976 quite old

almost 40 years from now, but then it is come into use only in the past 10 years it was

dormant mainly because of these disadvantages.

Recently if people have devised a lot of techniques from 2005 onwards where some of

the disadvantages that I have listed here can be overcome.

(Refer Slide Time: 13:12)

So, one of the techniques that people have introduced that helps us to overcomes the

disadvantages of symbolic testing is what is called concolic testing; concolic testing is

short form for concrete plus symbolic con colic that is how they have coined the term, it

means that you instead of keeping a symbolic value alone which we do in symbolic

testing you keep the concrete value along with the symbolic value. We will learn one

particular concolic testing technique called dart directed automated random testing I will

teach that to you in the next few lectures we will see how it overcomes several of the

disadvantages that we have listed of symbolic testing in this slide.

Concolic testing as I told you, keeps the concrete state along with the symbolic state

concrete state is the normal notion of a state of a program, if you remember in the last

lecture.

(Refer Slide Time: 14:20)

If you would let me go back in my slides for a minute, we had this sum program if you

remember, this program that calculated the sum.

(Refer Slide Time: 14:22)

A concrete state would be value of a is 1 b is 3, c is 5, x is 4, y is 8, z is 9, after statement

number 4 concrete state would be x 4, y 8, z 9, a 1, c b 3, c 5.

(Refer Slide Time: 14:40)

After symbolic execution in line number 4, x would be alpha 1 plus alpha 2 symbolic

expression, y would be alpha 2 plus alpha 3 another symbolic expression, there would be

another symbolic expression for z, the inputs a, b and c would have gotten symbolic

values. So, now, I will move forward to concrete testing.

So, concrete testing or concolic testing keeps concrete state as I just told you which

means it keeps concrete values; actual values and it will keep a symbolic state, it will

keep the symbolic values and the expressions; why does it keep both the difference will

be very obvious, very soon I will tell you and it what it tries to do is that by keeping track

of both it has the convenience of moving back and forth. So, that is what it does.

(Refer Slide Time: 15:31)

So, if I have to take the other example that I told you in the last class, again let me go

back to show you that example.

(Refer Slide Time: 15:40)

This was that example, if you remember, it did took 2 inputs x and y did z as twice of y

and then it said z is equal to x, if it is, then x plus y greater than 10 then there is an error,

this was the program, here if you remember the symbolic expression was all these, right.

I will show you that slide also, symbolic state was x is x naught, y is y naught, z is 2 y

naught, these where the path constraints x naught is equal to 2, y naught, x naught was

not equal to 2 y naught and this was after the second if statement was executed.

What we will now do is look at concolic statement. So, concolic execution; what will it

do? It will keep a concrete state; how will it keep a concrete state, here is one particular

way of keeping a concrete state, it will give a random input to the program. Let us say x

is equal to 22, y is equal to 7 or any other choice, what it will do is that it will start

executing the program, once it starts executing the program, x is equal to 22, y is equal to

7, go back to the code of the program, for this concrete input, this condition will it pass?

It will not pass. So, this condition will go as fail which means the second if statement

will not be evaluated.

So, that is what is written here the concrete execution on this input will make the

program take the else branch symbolic execution will generate saying the by the way; the

program took an else branch by because x naught is not equal to 2 y naught; what will

concrete; the concolic testing now do is that it says the program took the negation of this,

right, I will negate this condition to see what the program will do if it takes the other one.

So, it will negate this which means it will say x naught give inputs x and y such that x

naught equal to 2 y naught here is such input x is 2 y is 1. Now what will it do? This it

will go to the next statement in the program.

The next statement in the program concolic testing will say I did this which was already

my path condition, by the way I encountered one more if statement which was this and

this is the part of the; if statement that is satisfied by this test case now it will say it took

one particular branch; I will take this condition, negate it to make it, there take it the

other branch. So, when it negates it, it will get this condition x naught is equal to 2 y

naught; that is not the predicate under focus, it will keep it as it is. This was the predicate

under focus, here it was x naught less than or equal to 2 y naught, I will say x naught is

greater than y naught plus 10, sorry, there is a typographical error here it should be 10

please read it as 10. So, now, it will correctly get the test input x is equal to 13, y is equal

to 5 and it will hit the error statement in the program. So, this is how concolic execution

works, this is just to meant to be an introductory example, I will explain concolic

execution. In fact, this particular technique of concolic execution called dart in detail to

you.

(Refer Slide Time: 18:46)

So, what is concolic testing do? This is you can think of this as a concise summary of

concolic testing, it has a program that it wants to test; what it will first do it will generate

a random test input to the program, it will execute the program on the random test input

the program will take certain program paths as the program takes certain program paths

it will parallely symbolically execute the program; when it symbolically executes the

program, it will collect constraints which said the program encountered the first if

statement the first if statement encountered in the program for this random input turned

out to be true.

So, it will keep that constraint over symbolic variables and then it will move on, let us

say program encountered a second if statement second if statement on this run of the

program turned out to be false. So, it will take the constraint corresponding to the first, if

statement negate the constraint corresponding to the second if statement and these 2, it

will keep collecting path constraints like this. Now this represents one concrete execution

of a program on that random input and the whole set of path constraints. Now what

concolic testing will do is that this path constrained is an and of several different path

constraints, right. So, it will systematically negate each clause in it and then try to see

what the new execution of the program does and for that it will use a constraint solver to

get concrete values of inputs and it will repeat this till all the execution paths are done.

(Refer Slide Time: 20:19)

So, here is another example of concolic testing. So, this is a different function. So, it says

there is a function f which says int x is an integer variable like the earlier thing it just did

2 star x, there is a function h which says in takes 2 arguments x and y and returns an

integer it has 2 if statements first one if x is not equal to y, then it goes to the second

statement second says if f of x which is this f up here equal to x plus 10, then you abort;

abort means you stop, there is an error in the program you return 0, if you notice that it is

very similar to the earlier one; just a small piece of difference from the earlier example

that we had.

(Refer Slide Time: 21:08)

Now, the problem is this is the place that I want to reach using concolic testing; how will

I do? I will first randomly generate 2 inputs, let us say x is 30, 26, y is 34 any randomly

generated inputs then 2 predicates are there, x naught is not equal to y naught which I

know because in this random input that is true and then 2 x naught is not equal to x

naught plus 10; that is what this means right because f of x does 2 x and x plus 10 is

captured here. So, both these are taken path constraint looks like this, I take the second

one, negate it then I will get something that will reach the statement. So, this will be true

and this will be true I would have reached there that is how concrete testing works is that

clear.

(Refer Slide Time: 21:54)

I will explain it using an example and look at the general techniques of dart and so on in

the next lecture. Before I stop, I would like to tell you that there are modern constraint

solvers, they will give you some references. When I begin the next lectures and now

there are several popular symbolic testing techniques tools that exist, there is a tool

called cute symbolic testing you in a concolic unit testing engine for C developed by

University of Illinois. This cute for java which is again developed by University of

Illinois at Urbana Champaign; the PEX which is available for dotnet code as a part of

Microsoft visual studio the sage and so on and several other companies have developed

symbolic testing techniques tools I will give you the URLs of all these and some

constraints all words when I begin the next lecture in the next lecture, what we are going

to see is this dart technique in detail directed automated random testing, I will tell you

what that is and how concolic testing works on that.

Thank you.

