
Software testing
Prof. Meenakshi D’Souza

Department of Computer Science and Engineering
International Institute of Information Technology, Bangalore

Lecture – 50
Symbolic Testing

Hello, there I am going to begin a completely new module with this lecture, what we are

going to do a bag of techniques called symbolic testing techniques which I said I would

do at the end of this course. So, symbolic testing broadly includes a new set of testing

techniques, which are actually speaking more than decade more than 3 decade old, but

have become popular now. So, over the next 4 5 lectures we will exhaustively understand

symbolic testing.

(Refer Slide Time: 00:43)

So, before I move on with symbolic testing if you remember right in the first week, I told

you about the things that we will not do as the part of the testing course, and one of the

things that I said we will not do is related to proving programs correct, which broadly use

a bag of techniques collectively known as formal methods. Program proving means

taking a program and showing that it works correctly no matter; what do we mean by no

matter what? That is if given any input that is legally acceptable by a program, it will

always produce correct output. Now one thing to be noted before we move on is that

program proving is different from program testing. When I test a program all that I do is

to give some inputs using carefully designed tests collection methods which we saw

almost throughout the course, and check if the program works on these test inputs

correctly.

Now, we all know exhaustively you cannot go on giving test inputs to a program, it is not

feasible and it is not necessary also that is not the goal for testing. It isto be able to

cleverly design test case techniques to find the error. Given that we cannot exhaustively

test a program what we can do using testing is to show that on the inputs that we have

tested the program does the way it is supposed to be doing, it either works correctly or it

has an error. We cannot make any claim about the inputs that we have not tested the

program on; hence program can never be proved to be correct on the other inputs.

Program proving deals with proving a program to be correct and that involves a bag of

techniques as I told you which are called formal methods. What are formal methods I am

not going to introduce you even to a cursory extent of what formal methods is, I am just

listing here.

(Refer Slide Time: 02:30)

So, that if you are interested you could look up for other courses on NPTEl or other

material in this area. Formal methods is the word formal says involves mathematical

techniques that are based on taking a particular software artifact co design requirements,

you derive formal models from that and then you verify or validate a program. Formal

methods because their formal have mathematically sounds semantics, there are 3 broad

categories of formal methods available; model checking, theorem proving and program

analysis there is a currently running NPTEL course on model checking.

(Refer Slide Time: 03:18)

Now, program testing as I told you that is what we haveve dealt with in the course testing

a program, and the other extreme is program proving which is proving a program correct,

They can be thought of as extreme alternatives one does not replace the other they both

can be used together and it does not if you have proved a program correct that does not

mean that you need not test a program, if you have tested a program it does not mean that

you need not prove a program to be corrected; take complementary in fact, they consider

extreme alternatives.

In testing as I told you can be assured that the sample testrans work correctly by

checking the results, the actual output does not match the expected output or not. And

correct execution of program on inputs that have not been tested is still in doubts no

sweeping claits about the program is correct, because it is working on all my test inputs

that is wrong to state. But program proving you do not actually execute it one vector at a

time one test vector at a time, you use a bag of techniques that are listed here to

mathematically prove that a program needs it is specification.

What is it is specification? Is any requirement about a property of a program; could be a

requirement that states that the program needs it is functionality of a certain kind and so

on. It may or may not involve executing the program and the thing to be noted is that

unlike testing where there is heavy automation program proving cannot be automated at

all typically model checking is where there is automation possible, but it is not scalable

for all kinds of software, in theorem proving and in program analysis full automation is

never possible proofs are done by hand.

(Refer Slide Time: 05:00)

What we are going to do symbolic execution as I told you, symbolic execution can be

thought of or has been introduced by several papers that deal with this, as a practical

approach that or else stands in between program testing and program proving. Symbolic

execution is basically a testing technique that is why we are looking at it in this course, it

again executes a program, but it does not execute the program the way we have seen it

till now, it executes the program in a particular style called symbolic execution that is the

term. So, well understand what that term is today, each symbolic execution can be

thought of as executing a program on large set of actual inputs.

(Refer Slide Time: 05:40)

So, I will explain it through an example, here is a small piece of code very small piece of

code what does it do? It takes 3 numbers a b and c do not worry about what the types are

it is not given here, it is not important for us. Let us assume without loss of generality

that they are integers, takes these 3 numbers a b and c and then what does it do it

computes the sum of a b and c, but it does it in the roundabout way firsts adds a and b

stores it in x, then it adds b and c stores it in y.

Please remember it is supposed to add a with b and then with c, but by then what it does

is that because it is adding b twice between x and y when it finally, computes z by doing

x plus y it subtracts one b. This is just some way of writing program may not be the most

intuited way, but for some reason let us say it takes it like this, and then it returns z which

is the sum of a b and c. Let us say I give you the task of testing this program, what will

you do? You will give some values to a b and c based on some criteria and then test the

program. You will see what for these values of a b and c that you have given, what is the

expected output. Then you will run this piece of program and record the actual output

and see if the expected output matches the actual output. If it does then you say that the

test case is passed.

(Refer Slide Time: 07:02)

So, our actual test statement will look like this. So, let us say the inputs you are going to

give to the program a b and c are 1 2 and 3. I have written it here a is 1, b is 2, c is 3, I

will come back and tell you what this question marks are. What is question marks mean

is that as you give statement as you give inputs a b and c as 1 2 3, let us say you

maintaining this table which records what happens after these 5 statements in the

program are executed. What are the 5 statements in the program? You go back to the

program these are the 5 statements; the first statement is just the function name second

statement is this, third statement is this, fourth statement is this, fifth is the return

statement, sixth is the end statement.

So, you keep this table where you give inputs a b and c as some concrete values in this

case let us say 1 2 and 3, and then in the statement you record the values of the variables

in the program as the program executes. There are 3 other variables in the program x y

and z. X and y can be thought of as internal variables z is the variable that is returned.

So, after statement one which is the first statement in the program, which let us you pass

inputs as a b and c x y and z are not assigned any values, that is why there are these 3

question marks. After statement number 2 executes x becomes a plus b, what is a? 1 what

is b? 3. So, a plus b is 4. So, x becomes 4.

I have put these dashes they can be interpreted as values have not changed in the sense

that I still do not know what y is, I still do not know what z is a remains one b remains 3

c remains 5. If this is confusing you copy exactly what was there in the previous row

here that is what we mean by this dash. Now after statement number 2 which computes y

as b plus c y gets assigned value 8 all other values remain the same. Similarly after

statement number 3 what does z do? Z is x plus y minus b that will be 4 plus 8 which is

12, minus b is minus 3 12 minus 3 is 9. What is line number 5 do? Line number 5 returns

9. Using this statement you see actual output is the same as expected output, yes then

you say my test case is passed otherwise you say my test case is failed.

Now, let us say you decide to give another set of inputs to the program instead of 1 3 and

5, may be you will give 00 and 0 to see what happens how the program behaves. For the

same set of inputs you will again do the same thing you will give the inputs look at the

expected output look at the actual output compare and see if the test case is passed or

failed. Can repeat the process for another set of inputs repeat the process for another set

of inputs and do on carry on till test a criterion is met, or till you are satisfied as a tester

that the program is working correctly or when you reach a state where you know that the

program is erroneous. In this case the program segment that is given here is not

erroneous. So, it does work correctly.

(Refer Slide Time: 10:23)

Now, let us assume instead of giving these concrete values as 1 3 and 5, or any other

concrete values let us say I want to execute it symbolically. What I will do in that case is

that, I will say a is not 1 or any concrete value a is some symbolic value let us say alpha

1, b is another symbolic value let us say alpha 2, c is another symbolic value let us say

alpha 3. I will come back and tell you what this last column is. The rest of the table

exactly is the replica of this table, but instead of having concrete values here it executes

it on symbolic values, how do you interpret symbolic values at this stage?

Think of symbolic vales as being place holders for concrete values. So, when I say a is

alpha 1, you can think of a as being taken the symbolic value alpha 1, were alpha one

will eventually be 1 concrete value. Similarly b is also symbolically alpha 2, alpha 2

could represent any abstract value for b that matches the type of b eventually be

substituted by a concrete value for b similarly for c the rest of the table is the same it says

in statement 1 x y and z are not yet assigned, after statement 2 x becomes alpha one plus

alpha 2 y and z remain the same, all these remain the same, x becomes x remains the

same here after statement 3 y becomes alpha 2 plus alpha 3 z is not yet assigned, alpha 1

alpha 2 alpha 3 are the same, after statement 4 x and y are the same as before z becomes

this and so on is this clear and what does the program return.

This table is the same as this table there are 2 differences; one is here a b and c are given

concrete values as input, a b and c are given abstract or symbolic values as input

everything else is the same. The last column represents what is called a path constraint or

a path condition PC is short form for path constraint. Path constraint here is marked as

true. You can think of it as you remember our reachability infection and propagation

condition, you can think of PC as a set of conditions that collect those predicates that

predicates, corresponding to reachability infection and propagation.

If you see this program this does not have any decision statements any branching

statements. So, reachability is always true infection and propagation will also be

eventually true there is nothing like path constraint here. So, the path constraint is

marked as true right. So, this is how a program is symbolically executed. So, just to

repeat what I said you want to symbolically test or execute a program, the program looks

like any other normal program written let us say C or java or whatever programming

language, for normal testing you would give concrete values to inputs like in this case

you would give a 1b 3 c 5, in symbolic testing you would give symbolic values to inputs.

And then what do you do? You collect expressions corresponding to internal variables

because you have not given concrete values you cannot evaluate an expression x is equal

to a plus b, you can only collect another expression in terms of the symbolic variables.

One natural doubt that might come to your mind or that you might ask your self is, what

am I doing differently than what is given in this program here. Instead of writing a plus b

I am writing alpha 1 plus alpha 2, instead of writing b plus c I am writing alpha 2 plus

alpha 3 and so on that is natural in some sense we are so not doing anything. We just

saying that alpha is an arbitrary place holder value for a beta is another arbitrary place

holder value for b, alpha sorry alpha 2 is another arbitrary place holder value for b, and

alpha 3 is an arbitrary place holder value for v c that is exactly what is symbolic

execution.

(Refer Slide Time: 14:25)

I will illustrate it with another example this time it is a slightly bigger code. So, let us go

through the code first. So, here is a program. So, it has a function called twice which

takes as argument of type integer given as variable v and it returns an integer type. It is

just a one line function what does it do it multiplies v by 2 and returns it nothing else.

Now there is another program which is called test me, these names are given just for

improving readability there is nothing else to it, this program test me returns what it

takes 2 arguments x and y.

So, what does it do the first line it calls this function twice. To it might as well directly

said z is equal to 2 into y, but I have just said this to illustrate a particular point that I will

come back to. So, it calls the function twice which basically multiplies it is argument by

2 assigns it to z and then what does it do. It says if z is equal to the other input x, then

you go and check for one more condition is x is greater than y plus 10, then you say the

program reaches an error statement reaches an error state or error condition. I have not

explicitly written what the error condition is, but indicated more like that there is an error

just by writing it as error. It may not lead syntactically be legal in any programming

language, but think of is as representing an abstract piece of code that indicates an error

or you can think of it as printing an error state.

So, what does this program do? This program is very simple takes 2 arguments x and y

does z is equal to twice of y, then passes 2 if conditions checks first checks if z is equal

to x, then checks if x is greater than y plus ten both the if conditions have passed it says

there is an error, otherwise it does not do anything this is the program then this is being

called by main calls tests me, and then it says return 0 and I have also said what are

inputs x and y to test me, I say x is given as a symbolic input read this s y m underscore

input as x is being given as a symbolic input, similarly y is being given as a symbolic

input.

Now, before we move on and understand how symbolic execution works for this

program, what do I hope to achieve? I am telling you that there is an error in the program

using symbolic testing my goal would be to find this error. When can I reach this error? I

can reach this error if this if condition passes and if this if condition passes. You might

want to spend a minute thinking about which will be the values of x and y for which both

the if conditions will pass. By this is a small enough program if I look at this program for

a couple of minutes and study it is code, I will be able to come up with 2 values for x and

y such that both the if conditions pass and I will reach the error statement for sure.

(Refer Slide Time: 17:35)

Let us say instead of staring at this program and thinking about it manually yourself, you

want to be able to systematically do it. How will you do it? Let us say here is a way. So, I

will draw what is called an execution tree of a program what is this execution tree of a

program tell you? This can again be related to our reachability infection and propagation

condition, right in the very first statement after calling this function twice of y, I can

always reach here there are no if conditions, this is the first place where a decision takes

place if this if condition itself is false then this program exits.

Suppose this if condition is true then it goes into the second if condition, that is what this

node captures here. So, it says this is a first if statement that is encountered it can be true

or it can be false if it is false then the program does something, if it is true then the

second if statement is tested which in turn can be true and false. Now what are these 3

leaf nodes in the tree that I have given you I have given you 2 in example test case that

will make this if condition false for example, if x is 0 and y is 1 then this if condition will

be false why? Because it says 2 is equal to 0 which is false.

So, this can be thought of as a test case that will make this false, if this is true which in

some test case it could be either this or this, I will go ahead and test the next statement.

So, a test case for example, x is equal to 2 y is equal to 1 will make this one true and then

this one false similarly a test case for example, x is equal to 30 and y is equal to 15, will

make both the if statement true and this is the test case that corresponds to the error.

So, ideally to exhaustively test this program or to do edge coverage or branch coverage

or predicate coverage for this program, you make this statement true once false once you

make this statement true once false once that is what this does. This test case will make

this statement false the first if, then any of these test cases will make the if this if

statement true and this exclusively make this second if statement false, this will make the

second if statement true which will hit the error. So, symbolic execution what it does is it

will go back to this program, it try to not give concrete values for x and y it will give

symbolic values for x and y, and what it will do it collect constraints corresponding to

these if conditions. Towards the end it will try to solve the constraint and try to

automatically obtain this value that is what symbolic execution does.

(Refer Slide Time: 20:11)

So, symbolic execution uses symbolic values instead of concrete values as inputs inputs

means test case inputs. Program variables are represented as symbolic expressions over

the symbolic input values like for example, here going back to the previous sum code

there were 3 program variables x y and z, when I symbolically executed them I

represented them using symbolic expressions I represented x as alpha 1 plus alpha 2, y as

alpha 2 plus alpha 3 and so on right. So, that is what is written here program variables

which are internal variables in a program that do not correspond to inputs. Now become

symbolic expressions as the program runs.

The symbolic expression can be thought of first it is an arithmetic expression that is there

already in the program, but has symbolic variables because it is not being evaluated.

Output values are also a function of symbolic input variables what is a symbolic state?

Symbolic state at any point in a time gives me the symbolic values of all the variables

like for example, here going back to the sum program. If I read this at any point in time I

get the symbolic state, it says x is alpha 1 plus alpha 2, y is alpha 2 plus alpha 3, z is not

yet assigned value a is alpha 1 b is alpha 2, c is alpha 3, the program is executing

statement number 3 that is what is symbolic state will say.

Symbolic path constraint it is what we have introduced logic if you remember as per the

logic that we introduced, is a quantifier free predicate logic formula or it is a quantifier

free first order logic formula. Predicate logic is the same as first order logic; obviously,

there are no quantifiers and the path constraint is a normal predicate logic formula. If you

go back here the path constraint to reach this statement will be this is true and this is true

the path constraint to reach this statement would be not of this because that is when this

becomes false. For an example program like this there are no path constraints or path

constraint is just the Boolean constant true, because there are no decision statements in

this program.

So, ill just quickly repeat what I said in this slide, symbolic executions symbolically

executes the program over inputs, all the internal variables of program every internal

variable will have some expression in the program that evaluates it. Instead of evaluating

it you just substitute it with symbolic variables and keep it as symbolic expressions, a

symbolic state will be a large to pull that gives symbolic values or symbolic expressions

for the inputs and the variables in the program along with that, I collect path constraints

which can be thought of as all the decision statements that you encounter in the program

take the statement as it is when it is true, takes the negation of the statement when it is

false keep ending them and since there are no quantifiers here it is a quantifier free first

order logic or a predicate logic formula.

(Refer Slide Time: 23:25)

What is symbolic execution do? In software testing symbolic execution is used to

generate a test input for each execution path of a program. As I told you if you go back to

this tree an execution path is a sequence of true false values right if I say this is a path

length one which makes first condition false, this is the path of length 2 which makes the

first condition true second condition false and so on. So, a path constraint or an execution

path is a sequence of true and false values, where true at the ith position in the sequence

denotes that the ith conditional statement is true or it took the then branch and a false in

the ith position denotes that the ith conditional statement took the else branch. This

should be obvious as we see it in that example and we represent the execution path using

an execution tree this is an execution tree.

(Refer Slide Time: 24:24)

So, at the beginning of the symbolic execution the states symbolic state sigma is assigned

an empty map, which is dash dash dash a question mark question mark question mark at

every read statement assigns a symbolic variable, at every assignment statement it

assigns a symbolic expression like here. For example, there was this statement which can

be thought of as a read statement after statement one symbolic values are assigned, after

statement 2 symbolic expressions is assigned that is what I mean. At every read

statement symbolic execution adds the mapping assigning variable being read to it is

symbolic variable; at every assignment statement it adds symbolic expression.

(Refer Slide Time: 25:06)

Now, path constraint; path constraint initially is true to start with the moment you get a

first if statement if e then S else 1, S1 else S 2, this is how it looks like e is actually the

condition whatever your path constraint was you and it with sigma of e which means

take e substitute with symbolic expression and it this is for the then branch when that

conditional value is to true and you have to and it with negation of sigma of e to

represent the else branch for the condition to be false.

Like for example, if I go back here there were 2 path constraints, one for this if and one

for this if till I come here path constraint is true and then I will do true and z is equal to x

for 1, and I will do true and not of z is equal to x. So, true and z is equal to x will makes

this takes to true branch true, and not of z is equal to x will make this statement take the

false branch. And when I come here I already had 2 and z is equal to x, if I negated with

and of if I and it with x greater than y plus 10 then I get this if I and it with not of x

greater than y plus 10 then I get this. So, that is what it said in as your running a program

executing a program you would have a path constraint, for every if statement that you

encounter you and it with e ones, and you end it with negation of e ones. And ending it

with e intuitively represents the program taking the then branch and ending it with

negation of e represents the program taking an else branch.

Finally what you do you would have collected a path constraint like here you would have

collected this constraint and this constraint, you solve it means you give it to a solver will

return value say for this to be true and this to be true here is one value. If x is 30 y is 15

both are true. This becomes your test case that you execute the program on and similarly

to how do you get this test value you solve this and negation of this, then this will be the

test case how do you get this test case you solve negation of this.

So, each path constraint is solved and if there is a assignment then the program will

continue along the then or the else branch right ifs a path particular path constraint is not

satisfiable for some reason cannot be solved then you will say symbolic execution

terminates then and there.

(Refer Slide Time: 27:39)

So, at the end of symbolic execution path constraint is solved using a constraint solver

there could be third party constraint solvers. If you remember when I introduced

propositional logic to you I told you that the satisfiability problem for propositional logic

is an np complete problem, it is a hard problem. And the satisfiability problem for

predicate logic in general is undecidable, but there are lots of constraints solvers de real

is one of them that I use that you can use to solve these path constraints.

And if concrete test values come, then they become your concrete test inputs what do

these concrete test inputs achieve for? You let us say they concrete test inputs will

achieve by how many path constraints you have here? 3 different path constraints, 2 path

constraints, but their combinations give you 3 conditions by giving it in solving what you

guaranteed? Is your guaranteed exhaustive coverage for program with just 3 test cases,

you can completely cover this program. Test this program for every behaviour that is

possible in the program that is what is written here. So, it says that the program is

executed on the concrete input values that the constraint solver gives you; it will take

exactly the same path as the symbolic execution and terminate in the same way. These

concrete inputs ensure achieved in testing you will be able to take different test paths in

the program.

(Refer Slide Time: 29:09)

We will see a few more examples where this is illustrated very clearly like for example;

this is that we saw the same code I am showing you here again.

(Refer Slide Time: 29:17)

i will just walk you through the steps of symbolic execution, after executing these

statements 12 and 3, the symbolic inputs x naught and y naught are assigned to x and y

and after executing line 5 which is this line, x naught stays as x naught y naught stays as

y naught z becomes 2 y naught this is a symbolic expression and after line 6 where you

encounter first if statement, one which passes x naught is to y naught the other one is

failing x naught as equal to 2 y naught.

Now, you in an passes will go to the inner if statement where you take this if condition x

naught equal to 2 y naught, and it with the condition of the second if statement and you

take the same condition x naught is equal to 2 y naught and it with the negation of the if

statement which amounts to x naught less than or equal to y naught plus 10. So, you have

3 constarints that you have collected, first one is x naught not equal to 2 y naught, second

one is x naught equal to 2 y naught and x naught greater the y naught plus 10, and third

one is this.

You let us say you give these 3 constraints to a constraint solver then you will get some

values like this these are just one set of sample values any values that solve these

equations satisfy these equations are good enough, this is a small example. So, you could

just look at it and do this yourself. So, the value of symbolic execution may not be seen,

but let us say you are running it on a large enough example, then actually collecting these

constraints and solving them will help you to drive programming execution to a

particular path.

So, symbolic execution is valuable from that point of view. So, I will stop here in next

lecture I will continue with symbolic execution we will look at additional examples of

code that involves loops and so on.

Thank you.

