
Software Testing

Prof. Meenakshi D’Souza

Department of Computer Science and Engineering

International Institute of Information Technology, Bangalore

Lecture – 05

Basics of graphs: As used in testing

Hello everyone. So, we begin looking at test case design algorithms in this module what

I would be starting is to model software artifacts is graphs which will be one of the four

structures that we would consider. If you remember we said we would consider graphs

we would consider logic and expressions we would consider sets that model inputs to

software and finally, we would consider the underline grammar from which software

programming languages written right. So, we begin we are looking at test case

algorithms that deal with graphs. So, why we look at test case algorithms that deal with

graphs I would like to recap some basic terminologies related to graphs as we would be

doing in this course in testing.

Graphs and graphs theory are vast areas I will not be able to do just is to be able to cover

even the basic minimum concepts that we deal with in graphs. So, we will restrict

ourselves to just looking at terminologies that we need as far as test case design

algorithms are concerned in this course.

(Refer Slide Time: 01:18)

So, graph theory is a very old subject it is believe that study of graphs was initiated by

Euler in the year 1736 when they were trying to look at this city called Konigsberg in

Russia and then they were trying to model a problem of crossing the bridges in this city

in a particular way. So, they considered modeling this problem as a graph and graph

theory is suppose to originated with Euler’s theorem which is considered an old theorem.

So, you can imagine how old graphs is. Tree today graphs enjoy applications not only in

computer science, but in several different areas all sciences physics, chemistry, biology,

and federate finds exist extensive applications in sociology where people look at social

networks and other entities is very large graph models right.

So, what do we do with graphs? We will consider graphs is models of software artifacts

and see how to use graphs to design test cases as we want them.

(Refer Slide Time: 02:19)

So, we begin by introducing what a graph is say assume that you not seen it before. So, I

will introduce you from the very basic concepts. If you seen it before feel free to you

know sort of skin through these parts because they are talk about the basic terminologies

related to graph. So, how does a graph look like? It looks like this. So, this is what is

called an undirected graph which is simple in the sense that it does not have any self

loops and here is what is called a directed graph their edges have directions.

So, graphs have two parts to it there are nodes or vertices sometimes I will use these

terms synonymously interchangeably some people also call it is points and different

books might call them differently. So, that is typically sets that is marked using circles

like this each circle is given a number. So, there are 5 vertices or modes in this graph

which are labeled as u v w x and y. Similarly there are three modes vertices in this graph

labeled as p q and r and graphs also have what are called edges, edges are also called ax

or lines in certain other books. So, what is an edge? Edge is basically a pair of two notes

or two vertices. So, this pair of words nodes of vertices can be ordered or unordered.

So, if the pair is unordered that is I do not really worry about whether I am looking at the

pay u comma v or v comma u right when I say that the graph is an undirected graph and

if the pair that I look at is ordered, like if I look at this figure of a directed graph on the

right and looking at in ordered pair p comma r. So, there is an edge in this direction from

p to r and in this graph there is no edge in the reverse direction right. So, such graphs are

what are called directed graphs. Of course, it is to be noted that an edge can take vertex

to itself there is no requirement that u should be different from v.

So, if you look at this directed graph the pair r comma r constitutes this edge which is the

self loop around the vertex r. So, when I look at a pair r comma r in an directed or in

undirected graph because it is an reflects a pair I really do not worry about whether the

pair is ordered or unordered right it does not matter. Otherwise for each other pair of

distinct vertices whether the pair is ordered or unordered defines the kind of graphs that

we look at graphs could be directed as it is here or undirected as it is here.

(Refer Slide Time: 04:56)

So, graphs can be finite or infinite. So, a finite graph typically has a finite number of

vertices and infinite graph has an infinite number of vertices because our use of graphs in

this course is to be able to use them as artifacts that modeled various pieces of software

we will not really consider infinite graphs, we do not really have the need to modeled

any kind of software artifact is an infinite graph. So, we will look at finite graphs

throughout this course right.

A few other terminologies in this graph what is the degree of a vertex? The degree of a

vertex gives you the number of edges that are connected to the vertex another tem for

connected that people use in the graph theory is to say that an edges incident on the

vertex. So, if we go back to the graph examples that we have in the previous slide if you

take this vertex u in this undirected graph three edges are connected to this vertex you

write one coming from w one connecting it to x and one connecting it to v right. So, all

these three edges are supposed to be connected to u or incident on u and so the degree of

the vertex u is 3.

So, similarly degree of the vertex y is just 1 because there is only one edge that is

incident on y. So, if you go to this directed graph the degree of the vertex r would be 3.

So, when we count the degree of a vertex for an undirected graph we count the n degree

of the vertex, n degree is the number of edges that come into a particular vertex. So, here

there are three edges that come into r - one from p, one from q and one from r. So, we

say r has n degree 3, right. Similarly we also talk about an out degree of a vertex in an

directed graph. So, if it look at the vertex p, p has in degree 0 because there is no edge

that is coming into p, but p has out degree 2 because two edges go out of p.

If you look at the vertex q, q has in degree 1 because this edge from p to q comes into q

and q has out degree 1 because this edge from q to r goes out of q right.

(Refer Slide Time: 07:16)

So, moving on the graphs that we will look at will have several other things apart from

just vertices and edges. So, one at a time we look at what are the add on or the additional

features or annotations that we will consider to be a part of the graphs that we look at

right. So, graphs could have special designated vertices called initial vertex and final

vertex. So, what I have done here is I have taken the same graph that you saw two slides

ago and marked the vertex u as an initial vertex u has an edge that is incoming line that is

incoming into u, but it does not really have any vertex on the other side.

So, such vertexes what is called an initial vertex or an initial node they could also be

what are called final vertices. Final vertices are belief to be vertices that capture the end

of some kind of computation in the models that we will look at when we will look at

graph models corresponding to code and corresponding to design elements and become

clear what is the purpose of final vertex, but from now you can understand it to be a final

vertex is one in which computation is supposed to end in some way or the other and in

our pictures that we will look at final vertices will be marked by this concentric circle.

So, if you see in this directed graph p is an initial vertex and r is a final vertex in this

undirected graph u is an initial vertex and w is a final vertex.

So, typically we believe that most of the software artifacts that we will consider like code

mainly or design is always supposed to be deterministic in the sense that its behaviour is

definite and there is no non determinism in its behaviour. So, to be able to capture graph

is a model of a software that is meant to be deterministic we all always say that the graph

will typically always have only one initial state right if there were more than one initial

states then it will be a bit confusing as far as determinism is concerned right because u if

there are more than one initial states let say there are three initial states where would you

consider the computation is beginning from. You could interpret it has it is beginning

from any one of the initial states, but then write there the software is non deterministic

right and we really do not typically look at nondeterministic software, non deterministic

implementations of software do not exist.

We always look at deterministic implementations of software and hence we will consider

a graph models to always have only one initial state, but software as such executive

could take one of the several different execution paths that it goes through and based on

the path that it takes it could end in one of the many different states that it is in. So,

typically graph models that represents software artifacts we will have more than one final

state. In this example that I have shown in this slide it so happens that both these graphs

have exactly one final state, but that need not be the case in general right.

So, what is the summary of this slide? So, certain vertices in graphs which occurs models

of software artifacts could be marked a special initial vertices from where computation is

suppose to begin we will identify them by this incoming line right which is not

connected to any vertex on the other end and some vertices are marked as special final

vertices which are marked by this double circles as you can see in these two figures and

they are supposed to represent vertices in which computations end. Another point to note

is that they could be graphs in which both initial vertex and one of the initial final

vertices is also an initial vertex it is nothing that is specified which says the set of the

initial vertices and final vertices should be disjoint there is no requirement like that right.

(Refer Slide Time: 11:06)

So, how are we going to use them as graphs? Why do we need look at graphs as far as

software resting is concerned? Graphs I believe are the next to logical predicates may be

the very popular structure used in testing right the several testing and static program

analysis tools use graph models of software artifacts. So, where do these graphs come

from? They could come from several different sources in software artifacts they could

represent control flow graph of a particular program, do not worry if you do not know

these terms will introduce each of these terms as we move on in the course they could

represent what is called a data flow graph corresponding to a piece of code they could

represent what is called the call graph corresponding to a piece of code.

They could represent a software design element which is a modeled let say as a u m l

finite state machine or a u m l state chart, they could represent a requirement which is

given as a use case diagram or an activity diagram in the u m l notation. All these are

basically graph models that represent several different artifacts. Now you might ask a

question the kind of graphs that I define to you just a few minutes ago just had vertices

edges and may be some vertices marked as initial vertices and some vertices marked as

final vertices right; obviously, the kind of graphs that I am talking about here through

these different software artifacts and not going to be as simple as that we will typically

have lot of extra annotations or labels as parameters right.

There could be labels associated with vertices there could be labels associated with edges

and so on and so forth as and when needed we will look at a corresponding kind of

graph, but no matter what the kind of graphs they are they will always have this

underlined structure then we have vertices, some vertices marked as initial vertices, some

vertices marked as finial vertices and set of edges the edges could be directed or

undirected they will always have this structure and we will set of other things right. And

how are we going to use? Our goal is to be able to design test cases that we will cover

this graph in some way or the other covering in the sense of coverage criteria that I

defined to you in one of my earlier lectures right.

(Refer Slide Time: 13:26)

So, here is an example of how typical graph occurs as a modeled of a software artifact.

Another thing that I would like to reiterate at this point in my course is that when we

look at examples like this I will never show you a complete piece of code that is fully

implemented right; I will always show you a small fragment of code. Like if you see in

this example I have just shown a small fragment of code this does not mean that this is

the entire program right it can never be a full complete program and it does not mix

sense is a full complete program because you do not know what its inputs are, what its

outputs are where are the outputs being produced its clearly not an implementation ready

code right.

We will always look at fragments of code that is useful for us to understand a particular

algorithm or a methodology for test case design right and we will of course, see

examples where we will see full pieces of code, but as I go through my lecture we will

see a lot of code fragments right. So, do not confuse them with the code that is ready for

implementation it will not be the case. So, here is a piece of code fragment which talks

about an if statement. So, there is an if statement which says that if x is less than y which

means if this predicate turns out to be true then you go ahead and execute these two

statements what are these two statements one says y (Refer Time: 14:49) 0 to y and the

other says make x is equal to x plus 1 and with this predicate turns out to be false then

you say you say x is y plus 1 and no matter what you do when you come out you make z

as x plus 1 right.

So, here is a graph model corresponding to this particular code fragment how does this

graph model look like right. So, corresponding to this first if statement there is an initial

node in the graph which is marked here right this if statement basically tests for true or

false city of the predicate x less than y. So, if x is less than y this code takes this branch if

x is not less than y which means x is greater than or equal to y then this code takes, but

this branch suppose x is less than or equal to y then these two statements are to be

executed right. So, when it takes this branch I modeled one collapsed control flow mode

which basically represents the execution of two statements in order, in the order in which

they occur this two statements are as they come in the code assign 0 to y, assign x plus

one to x right.

Suppose x less than y was falls then the code takes the l’s branch and it comes here and it

executes the statement x is equal to y plus 1. So, it does not matter whether it takes the

then branch and x branch as per this example where it comes out of the flue bit executes

the statement. So, no matter whether it goes here or it here it always comes back and

executes this statement. So, this is how we modeled controlled flow graph corresponding

to a particular program statements. So, later I will show you for all other constructs for

loops and other things how those control flow graphs look like.

(Refer Slide Time: 16:33)

Here is another small example let say suppose you take the same if statement, but it in

have the l’s clause right. So, there is nothing that specified in the code about what to do

when this condition in this predicate x less then y is false, it does not matter people can

write code like that in that case what you do is if x is less than y from here this node

which represents this if statement you do these two statements at this node which is

assign 0 to y and assign x plus 1 to x and if this condition x less than y is false then you

come directly and execute the statement z is equal to x plus 1.

So, if you see this kind of graph the graph that we saw in this slide or the graph that we

saw in this slide they have vertices as we saw then they have a designated initial vertex I

have not marked any vertexes final vertex because I do not know whether the

computation of this code fragment ends here is a part of the larger code or not, and in

addition to that if you see both vertices and edges have labels associated with them.

These vertices this vertex is labeled with two statements from the program this vertex is

labeled with one statement from the program, these two edges are labeled with what are

called guards of predicates that tell when this edge can be taken right. So, like this

typically all other models of graphs that we will look at which is from this list we will

always look at some kind of extra annotations labels that comes with these kind of

structures right.

(Refer Slide Time: 18:03)

So, another important concepts that we need related to graphs as its used in testing is a

notation of path in the graph think of a path as in the graph a sitting at some vertex or a

node and just using the I just to walk through the graph. So, what is a path? Path is a

sequence of vertices just a finite sequence of vertices I told you will consider finite

graphs finite graphs does not mean that they give rise to finite paths because a graph

could have a cycle where in you can take it again cycle is a path that begins and ends at a

same vertex and you could take it again and again to be able to get an infinite path, but

we will look at finite paths from now. So, a path is a finite sequence of vertices let us say

v one v two and. So, on up to v n such that each pair of successive vertices in the path is

connected by an edge.

So, if I go back here to the example graphs that we saw in the first slide right - here is a

path and this graph it begins that u from u I go to w from w I go to x from x I can go

back to u and let say from u I go to v right. So, this is a path in the graph. So, what is the

length of the path when you talk about the length of the graph we count number of edges

in the paths? So, the length of the path is a number of edges single vertex could be a

paths and the length of such a paths will be 0, right. So, what is a sub path of a path? A

sub path of a path is just a subsequences of vertices that occur in the path. If we go back

to that example graphs that we had in mind I told you u w x u v is a path right.

(Refer Slide Time: 19:57)

In this there is a sub path which is say w x u v that is a sub path u w x is another sub

path. So, it is just sub sequence in the sequence of vertices that you encounter in the path

right. So, why are we looking at paths? We will looking at paths because we have going

to be able to design test cases that we can use these paths to reach a particular statement

or a particular mode in the graph corresponding to that software artifact. So, we say a

particular vertex b is reachable in the graph if there is a path from one of the initial

vertices of the graph to v. For the sake of reachability we will consider those paths that

begin at initial vertices only because we want to be able to satisfy the r i p r criteria if

you remember right r i p r - the first r is reachability. So, reachability means from the

inputs from the initial state of the corresponding graph, I should be able to reach a

particular vertex and moving on I should be able to propagate the output to a particular

vertex right. Those final vertex to which the output is propagated and visible to the use of

would be one of the final vertices.

So, we say a particular vertex v is reachable in the graph if there is a path from one of the

initial vertices to that vertex v in the graph right reachability is not restricted to just

vertices you could talk about reachability for an edge also. So, when is an edge reachable

in a graph we say a particular edge is reachable in a graph if there is a path from one of

the initial vertices to the beginning vertex of that edge which is u and moving on it

actually uses that edge to reach v right. So, there is a path from one of the initial vertices

to the edge to the vertex u and then it uses the edge u v to be to be able to reach the

vertex v then you say that the edge e which is given by the pair u comma v is reachable

in the graph c.

I hope you know the notion of a sub graph of a given graph. So, what is a sub graph of

the given graph? It has a subset of the set of vertices and then it has a subset of the set of

edges restricted to only those vertices that occur in the graph. So, you should go back

and look at the same example that we had. So, here is a graph I can think of just this

triangular entity right which consist of three vertices u x w and these three edges as a sub

graph of this entire graph or you could just considered just this stand alone vertex v and

another stand alone vertex y as a sub graph just containing two vertices right. So, we can

talk about reachability for sub graphs also. So, we say a sub graph g prime of a graph G

is reachable if any of the vertices in that sub graph is reachable from the initial vertex of

G, right.

(Refer Slide Time: 22:41)

So, how are there algorithms that deal with computing paths and computing reachability

of a particular vertex? Of course, all I am assuming all of you know basic graph

algorithms in case you do not know please feel free to look up NPTEL courses the deal

with design and analysis of algorithms and get to know about graph algorithms two basic

algorithms that you have to be familiar with what are called breadth first search and

depth first search. Most of the test case design algorithms that we will deal with in this

course will involve depth first search or breadth first search along with some

manipulations and add on to these algorithms, I will not be able to cover these algorithms

because I want to be able to focus on test case design using graphs right.

(Refer Slide Time: 23:29)

So, now instead of looking at arbitrary paths and graphs we will see what are test paths

in graph right. So, what is a test path a test path as I told you has to begin in an initial

vertex to be able to ensure reachability and it has to end in one of the final vertices. So, a

test path in a graph is any paths that begins in an initial vertex and ends in a final vertex

right. So, if I go back to the same example if I see here path of the form u x w is a test

paths because it begins in an initial vertex u and ends in a final vertex w, whereas path of

the form u w x y is not a test path because even though it begins in initial vertex u the

vertex that it ends which is y is not one of the final vertices. So, for us test paths will

always begin at initial vertex and end at a final vertex right.

So, test paths will result in some test cases being executable right test paths if some test

paths can be executed by test cases then those of called feasible test paths. There could

be test paths for which I cannot execute any test case, like for example there could be a

test path which says you somehow reach a piece of dead code or unreachable code. So, I

will not be able to write a test case that you can reach the dead code with it. So, such test

paths will be called as infeasible test paths we will make these terminologies clear as we

move on.

(Refer Slide Time: 25:04)

So, few other terminologies we need to be able start looking at algorithms for test case

design those are the notion of visiting and touring. So, we say test path p visits a vertex

v, v occurs along the path p right.

Similarly, a test path p visits an edge e if e occurs along the path p right. A test path p

towards path q if q happens to be a sub path of p, we will go back to the same graphs that

we looked at, so here is a test path right u x w, right. So, this test path visits three vertices

u x and w and it visits two edges the edge u x and the edge x w and it towards a sub paths

w x right you could consider another test path which looks like this it could be u w x u w

right. So, this test path visits three vertices u x and w it happens to visit them again and

again, but basically it visits only three vertices and it towards the sub paths u w x. So, I

hope visiting and touring a clear value we will look at what are tests and test paths.

(Refer Slide Time: 26:24)

Let us take a small example look at this graph this graphs is got four vertices u v w and x

right and here is an initial vertex u, it models control flow corresponding to a simple

switch statement switch case statement, the switch case statement is at the node u then a

three switch cases if a is less than b you go to b execute may be some statements, if a is

equal to b than you go to w and do something else if a is greater than b then you go to x

and then you do something else and it so happens that computation terminates at x right.

So, what suppose I have a test case input a as 0 and b as 1 then which is the condition

that it satisfies it satisfies a less than b right.

So, which is the test path that this test case executes? This test case executes the path u v

and remember test path is one that has to end in a final state right v is not one of the final

states which is a final state in this graph it happens to be the state x right. So, I go from u

to be because my test case satisfies the predicate a less than v and I can freely go from v

to w and then from w to x because these to edges and this graph do not have any guards

or conditions labeling them. So, if my test case input is a 0 and p 1 then I say that the test

path that it takes is u to v because it satisfies a less than b and then v to w and w to x this

is clear. So, similarly if my test input is less say a is 3 and b is 1 then in this switch case

statement the predicate that is satisfies if this is a greater than p b and than the test path

that it takes is just the single edge u x it just. So, happens that this path containing just

this one edge already is a test path because it begins at the initial vertex u and ends at the

final vertex x right.

So, similarly when I have set of test cases I can talk about a set of test paths for each test

case in the set of test cases you consider the test paths that they execute and take the

union of all the test paths to be able to get the set of test paths corresponding to a set of

test case. Please remember that one test case can execute many test paths right this

example does not show that, but one test case can execute like for example, if a club

these two conditions right and say a is less than or equal to b then I can write several test

cases write that will execute this path.

(Refer Slide Time: 29:07)

Now, we will go back and see reachability in the context of test paths when we define

reachability for graphs we defined it in a purely syntactic nature you say a particular

vertex b is reachable. If there is a path from the initial state to one of the vertices right as

you see in this example it need to be purely syntactic because there could be conditions

associated with edges there could be something associated with vertices as you traverse

along a path your implicitly allow to traverse only if that condition a guard is met right.

So, in the real application of graphs we would be looking at reachability in the presence

of these additional annotations and condition right. So, we will see what reachability

means in the presence of these conditions right. And it is to be noted that if I have a

particular test path that is infeasible like I told you right a test path that insist that you

reach a piece some death code than it corresponds to vertices or nodes or edges or graphs

that are not reachable from the main graph.

Like for example, it might. So, happened where the control flow graph particular

program has two disjoint components in which case suppose I insist that and all the

initial vertices are in one component, I insist that you reach a vertex from the initial

vertex to another vertex in the second component because these two are two disjoint

components and may not be able to reach that vertex at all and I say that it represents in

feasible test requirements. So, we will see several examples of where infeasible test

requirements could occur when we look at graph models right. So, how are we go into

use graphs for test case design?

(Refer Slide Time: 30:44)

We will develop a model of a software artifact as a graph, I already showed you to

examples of how to take a codes in a (Refer Time: 30:55) and write a control flow graph

corresponding to that right. It is to be noted as we saw in that example that these graphs

apart from vertices and edges could contain several different annotations labels right. So,

here are some examples some of the vertices could be initial and final vertices it could

have a labels of statements predicates associated with its vertices and edges as we saw in

those two examples. In addition to that it could have data values data values for variables

that are defined at particular statement data values for variables that I used at a particular

statement such graphs are called data flow graphs I have not shown you an example in

this slide, but in later lectures we will see what data flow graphs look like.

But what is to be remembered is that they will typically graphs that model software

artifacts will always have some kind of labels associated with their vertices or edges

right. So, we want to be able to use one or more reachability algorithms to be able to

design test cases for these kind of graphs right.

(Refer Slide Time: 31:57)

So, we will read a find what test requirement what test criteria are now specific to

graphs. So, what is a test requirement? It just describes a property of a test path test path

as it corresponds to in a graph. What is a test criteria? Test criterion is set of rules that

define the test requirement. Then for example, if you take this graphs that we looked at

earlier the test criterion that it describes is to say do branch coverage on the vertex u

means the degrees of vertex is the out degree of the vertex u is 3, there are three branches

going out of u right test cases to cover all three branches that is what we did here we do

not test cases to cover all three branches.

So, what is satisfaction? We see a particular set of test requirement satisfies a coverage

criteria c if the test cases that are right for that test requirement satisfied all the test paths

that need the requirement. Like for example, if my coverage criteria say branch coverage

at mode u then these three test cases right completely achieve branch coverage for this

particular mode u right.

(Refer Slide Time: 33:10)

So, moving on we will look at two kinds of coverage criteria related to graphs. The first

coverage criteria that we will be looking at is what is called structural coverage criteria

where we will define coverage criteria purely based on the vertices and edges in the

graph right.

They could be annotated with statements and so on, but we would not really use the what

the statements are or the other annotations to be able to define the coverage criteria. We

will purely defined in terms of just vertices and edges the next kind of coverage criteria

would be data flow coverage criteria where we again look at graphs that are annotated

with variables and so on and we will define coverage criteria, based on the annotations

based on the variables and the values that they defined right.

(Refer Slide Time: 34:02)

So, in the next module I will begin with structural coverage criteria and walk you

through algorithms and test case design for achieving various kinds of structural

coverage criteria in graphs.

Thank you.

