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Basics of graphs: As used in testing 

 

Hello everyone. So, we begin looking at test case design algorithms in this module what 

I would be starting is to model software artifacts is graphs which will be one of the four 

structures that we would consider. If you remember we said we would consider graphs 

we would consider logic and expressions we would consider sets that model inputs to 

software and finally, we would consider the underline grammar from which software 

programming languages written right. So, we begin we are looking at test case 

algorithms that deal with graphs. So, why we look at test case algorithms that deal with 

graphs I would like to recap some basic terminologies related to graphs as we would be 

doing in this course in testing. 

Graphs and graphs theory are vast areas I will not be able to do just is to be able to cover 

even the basic minimum concepts that we deal with in graphs. So, we will restrict 

ourselves to just looking at terminologies that we need as far as test case design 

algorithms are concerned in this course. 
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So, graph theory is a very old subject it is believe that study of graphs was initiated by 

Euler in the year 1736 when they were trying to look at this city called Konigsberg in 

Russia and then they were trying to model a problem of crossing the bridges in this city 

in a particular way. So, they considered modeling this problem as a graph and graph 

theory is suppose to originated with Euler’s theorem which is considered an old theorem. 

So, you can imagine how old graphs is. Tree today graphs enjoy applications not only in 

computer science, but in several different areas all sciences physics, chemistry, biology, 

and federate finds exist extensive applications in sociology where people look at social 

networks and other entities is very large graph models right. 

So, what do we do with graphs? We will consider graphs is models of software artifacts 

and see how to use graphs to design test cases as we want them. 
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So, we begin by introducing what a graph is say assume that you not seen it before. So, I 

will introduce you from the very basic concepts. If you seen it before feel free to you 

know sort of skin through these parts because they are talk about the basic terminologies 

related to graph. So, how does a graph look like? It looks like this. So, this is what is 

called an undirected graph which is simple in the sense that it does not have any self 

loops and here is what is called a directed graph their edges have directions. 

So, graphs have two parts to it there are nodes or vertices sometimes I will use these 

terms synonymously interchangeably some people also call it is points and different 



books might call them differently. So, that is typically sets that is marked using circles 

like this each circle is given a number. So, there are 5 vertices or modes in this graph 

which are labeled as u v w x and y. Similarly there are three modes vertices in this graph 

labeled as p q and r and graphs also have what are called edges, edges are also called ax 

or lines in certain other books. So, what is an edge? Edge is basically a pair of two notes 

or two vertices. So, this pair of words nodes of vertices can be ordered or unordered. 

So, if the pair is unordered that is I do not really worry about whether I am looking at the 

pay u comma v or v comma u right when I say that the graph is an undirected graph and 

if the pair that I look at is ordered, like if I look at this figure of a directed graph on the 

right and looking at in ordered pair p comma r. So, there is an edge in this direction from 

p to r and in this graph there is no edge in the reverse direction right. So, such graphs are 

what are called directed graphs. Of course, it is to be noted that an edge can take vertex 

to itself there is no requirement that u should be different from v. 

So, if you look at this directed graph the pair r comma r constitutes this edge which is the 

self loop around the vertex r. So, when I look at a pair r comma r in an directed or in 

undirected graph because it is an reflects a pair I really do not worry about whether the 

pair is ordered or unordered right it does not matter. Otherwise for each other pair of 

distinct vertices whether the pair is ordered or unordered defines the kind of graphs that 

we look at graphs could be directed as it is here or undirected as it is here. 
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So, graphs can be finite or infinite. So, a finite graph typically has a finite number of 

vertices and infinite graph has an infinite number of vertices because our use of graphs in 

this course is to be able to use them as artifacts that modeled various pieces of software 

we will not really consider infinite graphs, we do not really have the need to modeled 

any kind of software artifact is an infinite graph. So, we will look at finite graphs 

throughout this course right.  

A few other terminologies in this graph what is the degree of a vertex? The degree of a 

vertex gives you the number of edges that are connected to the vertex another tem for 

connected that people use in the graph theory is to say that an edges incident on the 

vertex. So, if we go back to the graph examples that we have in the previous slide if you 

take this vertex u in this undirected graph three edges are connected to this vertex you 

write one coming from w one connecting it to x and one connecting it to v right. So, all 

these three edges are supposed to be connected to u or incident on u and so the degree of 

the vertex u is 3. 

So, similarly degree of the vertex y is just 1 because there is only one edge that is 

incident on y. So, if you go to this directed graph the degree of the vertex r would be 3. 

So, when we count the degree of a vertex for an undirected graph we count the n degree 

of the vertex, n degree is the number of edges that come into a particular vertex. So, here 

there are three edges that come into r - one from p, one from q and one from r. So, we 

say r has n degree 3, right. Similarly we also talk about an out degree of a vertex in an 

directed graph. So, if it look at the vertex p, p has in degree 0 because there is no edge 

that is coming into p, but p has out degree 2 because two edges go out of p. 

If you look at the vertex q, q has in degree 1 because this edge from p to q comes into q 

and q has out degree 1 because this edge from q to r goes out of q right. 
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So, moving on the graphs that we will look at will have several other things apart from 

just vertices and edges. So, one at a time we look at what are the add on or the additional 

features or annotations that we will consider to be a part of the graphs that we look at 

right. So, graphs could have special designated vertices called initial vertex and final 

vertex. So, what I have done here is I have taken the same graph that you saw two slides 

ago and marked the vertex u as an initial vertex u has an edge that is incoming line that is 

incoming into u, but it does not really have any vertex on the other side. 

So, such vertexes what is called an initial vertex or an initial node they could also be 

what are called final vertices. Final vertices are belief to be vertices that capture the end 

of some kind of computation in the models that we will look at when we will look at 

graph models corresponding to code and corresponding to design elements and become 

clear what is the purpose of final vertex, but from now you can understand it to be a final 

vertex is one in which computation is supposed to end in some way or the other and in 

our pictures that we will look at final vertices will be marked by this concentric circle. 

So, if you see in this directed graph p is an initial vertex and r is a final vertex in this 

undirected graph u is an initial vertex and w is a final vertex. 

So, typically we believe that most of the software artifacts that we will consider like code 

mainly or design is always supposed to be deterministic in the sense that its behaviour is 

definite and there is no non determinism in its behaviour. So, to be able to capture graph 



is a model of a software that is meant to be deterministic we all always say that the graph 

will typically always have only one initial state right if there were more than one initial 

states then it will be a bit confusing as far as determinism is concerned right because u if 

there are more than one initial states let say there are three initial states where would you 

consider the computation is beginning from. You could interpret it has it is beginning 

from any one of the initial states, but then write there the software is non deterministic 

right and we really do not typically look at nondeterministic software, non deterministic 

implementations of software do not exist. 

We always look at deterministic implementations of software and hence we will consider 

a graph models to always have only one initial state, but software as such executive 

could take one of the several different execution paths that it goes through and based on 

the path that it takes it could end in one of the many different states that it is in. So, 

typically graph models that represents software artifacts we will have more than one final 

state. In this example that I have shown in this slide it so happens that both these graphs 

have exactly one final state, but that need not be the case in general right. 

So, what is the summary of this slide? So, certain vertices in graphs which occurs models 

of software artifacts could be marked a special initial vertices from where computation is 

suppose to begin we will identify them by this incoming line right which is not 

connected to any vertex on the other end and some vertices are marked as special final 

vertices which are marked by this double circles as you can see in these two figures and 

they are supposed to represent vertices in which computations end. Another point to note 

is that they could be graphs in which both initial vertex and one of the initial final 

vertices is also an initial vertex it is nothing that is specified which says the set of the 

initial vertices and final vertices should be disjoint there is no requirement like that right. 
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So, how are we going to use them as graphs? Why do we need look at graphs as far as 

software resting is concerned? Graphs I believe are the next to logical predicates may be 

the very popular structure used in testing right the several testing and static program 

analysis tools use graph models of software artifacts. So, where do these graphs come 

from? They could come from several different sources in software artifacts they could 

represent control flow graph of a particular program, do not worry if you do not know 

these terms will introduce each of these terms as we move on in the course they could 

represent what is called a data flow graph corresponding to a piece of code they could 

represent what is called the call graph corresponding to a piece of code. 

They could represent a software design element which is a modeled let say as a u m l 

finite state machine or a u m l state chart, they could represent a requirement which is 

given as a use case diagram or an activity diagram in the u m l notation. All these are 

basically graph models that represent several different artifacts. Now you might ask a 

question the kind of graphs that I define to you just a few minutes ago just had vertices 

edges and may be some vertices marked as initial vertices and some vertices marked as 

final vertices right; obviously, the kind of graphs that I am talking about here through 

these different software artifacts and not going to be as simple as that we will typically 

have lot of extra annotations or labels as parameters right. 



There could be labels associated with vertices there could be labels associated with edges 

and so on and so forth as and when needed we will look at a corresponding kind of 

graph, but no matter what the kind of graphs they are they will always have this 

underlined structure then we have vertices, some vertices marked as initial vertices, some 

vertices marked as finial vertices and set of edges the edges could be directed or 

undirected they will always have this structure and we will set of other things right. And 

how are we going to use? Our goal is to be able to design test cases that we will cover 

this graph in some way or the other covering in the sense of coverage criteria that I 

defined to you in one of my earlier lectures right. 
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So, here is an example of how typical graph occurs as a modeled of a software artifact. 

Another thing that I would like to reiterate at this point in my course is that when we 

look at examples like this I will never show you a complete piece of code that is fully 

implemented right; I will always show you a small fragment of code. Like if you see in 

this example I have just shown a small fragment of code this does not mean that this is 

the entire program right it can never be a full complete program and it does not mix 

sense is a full complete program because you do not know what its inputs are, what its 

outputs are where are the outputs being produced its clearly not an implementation ready 

code right. 



We will always look at fragments of code that is useful for us to understand a particular 

algorithm or a methodology for test case design right and we will of course, see 

examples where we will see full pieces of code, but as I go through my lecture we will 

see a lot of code fragments right. So, do not confuse them with the code that is ready for 

implementation it will not be the case. So, here is a piece of code fragment which talks 

about an if statement. So, there is an if statement which says that if x is less than y which 

means if this predicate turns out to be true then you go ahead and execute these two 

statements what are these two statements one says y (Refer Time: 14:49) 0 to y and the 

other says make x is equal to x plus 1 and with this predicate turns out to be false then 

you say you say x is y plus 1 and no matter what you do when you come out you make z 

as x plus 1 right. 

So, here is a graph model corresponding to this particular code fragment how does this 

graph model look like right. So, corresponding to this first if statement there is an initial 

node in the graph which is marked here right this if statement basically tests for true or 

false city of the predicate x less than y. So, if x is less than y this code takes this branch if 

x is not less than y which means x is greater than or equal to y then this code takes, but 

this branch suppose x is less than or equal to y then these two statements are to be 

executed right. So, when it takes this branch I modeled one collapsed control flow mode 

which basically represents the execution of two statements in order, in the order in which 

they occur this two statements are as they come in the code assign 0 to y, assign x plus 

one to x right. 

Suppose x less than y was falls then the code takes the l’s branch and it comes here and it 

executes the statement x is equal to y plus 1. So, it does not matter whether it takes the 

then branch and x branch as per this example where it comes out of the flue bit executes 

the statement. So, no matter whether it goes here or it here it always comes back and 

executes this statement. So, this is how we modeled controlled flow graph corresponding 

to a particular program statements. So, later I will show you for all other constructs for 

loops and other things how those control flow graphs look like. 
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Here is another small example let say suppose you take the same if statement, but it in 

have the l’s clause right. So, there is nothing that specified in the code about what to do 

when this condition in this predicate x less then y is false, it does not matter people can 

write code like that in that case what you do is if x is less than y from here this node 

which represents this if statement you do these two statements at this node which is 

assign 0 to y and assign x plus 1 to x and if this condition x less than y is false then you 

come directly and execute the statement z is equal to x plus 1. 

So, if you see this kind of graph the graph that we saw in this slide or the graph that we 

saw in this slide they have vertices as we saw then they have a designated initial vertex I 

have not marked any vertexes final vertex because I do not know whether the 

computation of this code fragment ends here is a part of the larger code or not, and in 

addition to that if you see both vertices and edges have labels associated with them. 

These vertices this vertex is labeled with two statements from the program this vertex is 

labeled with one statement from the program, these two edges are labeled with what are 

called guards of predicates that tell when this edge can be taken right. So, like this 

typically all other models of graphs that we will look at which is from this list we will 

always look at some kind of extra annotations labels that comes with these kind of 

structures right. 
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So, another important concepts that we need related to graphs as its used in testing is a 

notation of path in the graph think of a path as in the graph a sitting at some vertex or a 

node and just using the I just to walk through the graph. So, what is a path? Path is a 

sequence of vertices just a finite sequence of vertices I told you will consider finite 

graphs finite graphs does not mean that they give rise to finite paths because a graph 

could have a cycle where in you can take it again cycle is a path that begins and ends at a 

same vertex and you could take it again and again to be able to get an infinite path, but 

we will look at finite paths from now. So, a path is a finite sequence of vertices let us say 

v one v two and. So, on up to v n such that each pair of successive vertices in the path is 

connected by an edge. 

So, if I go back here to the example graphs that we saw in the first slide right - here is a 

path and this graph it begins that u from u I go to w from w I go to x from x I can go 

back to u and let say from u I go to v right. So, this is a path in the graph. So, what is the 

length of the path when you talk about the length of the graph we count number of edges 

in the paths? So, the length of the path is a number of edges single vertex could be a 

paths and the length of such a paths will be 0, right. So, what is a sub path of a path? A 

sub path of a path is just a subsequences of vertices that occur in the path. If we go back 

to that example graphs that we had in mind I told you u w x u v is a path right. 
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In this there is a sub path which is say w x u v that is a sub path u w x is another sub 

path. So, it is just sub sequence in the sequence of vertices that you encounter in the path 

right. So, why are we looking at paths? We will looking at paths because we have going 

to be able to design test cases that we can use these paths to reach a particular statement 

or a particular mode in the graph corresponding to that software artifact. So, we say a 

particular vertex b is reachable in the graph if there is a path from one of the initial 

vertices of the graph to v. For the sake of reachability we will consider those paths that 

begin at initial vertices only because we want to be able to satisfy the r i p r criteria if 

you remember right r i p r - the first r is reachability. So, reachability means from the 

inputs from the initial state of the corresponding graph, I should be able to reach a 

particular vertex and moving on I should be able to propagate the output to a particular 

vertex right. Those final vertex to which the output is propagated and visible to the use of 

would be one of the final vertices. 

So, we say a particular vertex v is reachable in the graph if there is a path from one of the 

initial vertices to that vertex v in the graph right reachability is not restricted to just 

vertices you could talk about reachability for an edge also. So, when is an edge reachable 

in a graph we say a particular edge is reachable in a graph if there is a path from one of 

the initial vertices to the beginning vertex of that edge which is u and moving on it 

actually uses that edge to reach v right. So, there is a path from one of the initial vertices 

to the edge to the vertex u and then it uses the edge u v to be to be able to reach the 



vertex v then you say that the edge e which is given by the pair u comma v is reachable 

in the graph c. 

I hope you know the notion of a sub graph of a given graph. So, what is a sub graph of 

the given graph? It has a subset of the set of vertices and then it has a subset of the set of 

edges restricted to only those vertices that occur in the graph. So, you should go back 

and look at the same example that we had. So, here is a graph I can think of just this 

triangular entity right which consist of three vertices u x w and these three edges as a sub 

graph of this entire graph or you could just considered just this stand alone vertex v and 

another stand alone vertex y as a sub graph just containing two vertices right. So, we can 

talk about reachability for sub graphs also. So, we say a sub graph g prime of a graph G 

is reachable if any of the vertices in that sub graph is reachable from the initial vertex of 

G, right. 
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So, how are there algorithms that deal with computing paths and computing reachability 

of a particular vertex? Of course, all I am assuming all of you know basic graph 

algorithms in case you do not know please feel free to look up NPTEL courses the deal 

with design and analysis of algorithms and get to know about graph algorithms two basic 

algorithms that you have to be familiar with what are called breadth first search and 

depth first search. Most of the test case design algorithms that we will deal with in this 

course will involve depth first search or breadth first search along with some 



manipulations and add on to these algorithms, I will not be able to cover these algorithms 

because I want to be able to focus on test case design using graphs right. 
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So, now instead of looking at arbitrary paths and graphs we will see what are test paths 

in graph right. So, what is a test path a test path as I told you has to begin in an initial 

vertex to be able to ensure reachability and it has to end in one of the final vertices. So, a 

test path in a graph is any paths that begins in an initial vertex and ends in a final vertex 

right. So, if I go back to the same example if I see here path of the form u x w is a test 

paths because it begins in an initial vertex u and ends in a final vertex w, whereas path of 

the form u w x y is not a test path because even though it begins in initial vertex u the 

vertex that it ends which is y is not one of the final vertices. So, for us test paths will 

always begin at initial vertex and end at a final vertex right. 

So, test paths will result in some test cases being executable right test paths if some test 

paths can be executed by test cases then those of called feasible test paths. There could 

be test paths for which I cannot execute any test case, like for example there could be a 

test path which says you somehow reach a piece of dead code or unreachable code. So, I 

will not be able to write a test case that you can reach the dead code with it. So, such test 

paths will be called as infeasible test paths we will make these terminologies clear as we 

move on. 
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So, few other terminologies we need to be able start looking at algorithms for test case 

design those are the notion of visiting and touring. So, we say test path p visits a vertex 

v, v occurs along the path p right. 

Similarly, a test path p visits an edge e if e occurs along the path p right. A test path p 

towards path q if q happens to be a sub path of p, we will go back to the same graphs that 

we looked at, so here is a test path right u x w, right. So, this test path visits three vertices 

u x and w and it visits two edges the edge u x and the edge x w and it towards a sub paths 

w x right you could consider another test path which looks like this it could be u w x u w 

right. So, this test path visits three vertices u x and w it happens to visit them again and 

again, but basically it visits only three vertices and it towards the sub paths u w x. So, I 

hope visiting and touring a clear value we will look at what are tests and test paths. 
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Let us take a small example look at this graph this graphs is got four vertices u v w and x 

right and here is an initial vertex u, it models control flow corresponding to a simple 

switch statement switch case statement, the switch case statement is at the node u then a 

three switch cases if a is less than b you go to b execute may be some statements, if a is 

equal to b than you go to w and do something else if a is greater than b then you go to x 

and then you do something else and it so happens that computation terminates at x right. 

So, what suppose I have a test case input a as 0 and b as 1 then which is the condition 

that it satisfies it satisfies a less than b right. 

So, which is the test path that this test case executes? This test case executes the path u v 

and remember test path is one that has to end in a final state right v is not one of the final 

states which is a final state in this graph it happens to be the state x right. So, I go from u 

to be because my test case satisfies the predicate a less than v and I can freely go from v 

to w and then from w to x because these to edges and this graph do not have any guards 

or conditions labeling them. So, if my test case input is a 0 and p 1 then I say that the test 

path that it takes is u to v because it satisfies a less than b and then v to w and w to x this 

is clear. So, similarly if my test input is less say a is 3 and b is 1 then in this switch case 

statement the predicate that is satisfies if this is a greater than p b and than the test path 

that it takes is just the single edge u x it just. So, happens that this path containing just 

this one edge already is a test path because it begins at the initial vertex u and ends at the 

final vertex x right. 



So, similarly when I have set of test cases I can talk about a set of test paths for each test 

case in the set of test cases you consider the test paths that they execute and take the 

union of all the test paths to be able to get the set of test paths corresponding to a set of 

test case. Please remember that one test case can execute many test paths right this 

example does not show that, but one test case can execute like for example, if a club 

these two conditions right and say a is less than or equal to b then I can write several test 

cases write that will execute this path. 
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Now, we will go back and see reachability in the context of test paths when we define 

reachability for graphs we defined it in a purely syntactic nature you say a particular 

vertex b is reachable. If there is a path from the initial state to one of the vertices right as 

you see in this example it need to be purely syntactic because there could be conditions 

associated with edges there could be something associated with vertices as you traverse 

along a path your implicitly allow to traverse only if that condition a guard is met right. 

So, in the real application of graphs we would be looking at reachability in the presence 

of these additional annotations and condition right. So, we will see what reachability 

means in the presence of these conditions right. And it is to be noted that if I have a 

particular test path that is infeasible like I told you right a test path that insist that you 

reach a piece some death code than it corresponds to vertices or nodes or edges or graphs 

that are not reachable from the main graph. 



Like for example, it might. So, happened where the control flow graph particular 

program has two disjoint components in which case suppose I insist that and all the 

initial vertices are in one component, I insist that you reach a vertex from the initial 

vertex to another vertex in the second component because these two are two disjoint 

components and may not be able to reach that vertex at all and I say that it represents in 

feasible test requirements. So, we will see several examples of where infeasible test 

requirements could occur when we look at graph models right. So, how are we go into 

use graphs for test case design? 

(Refer Slide Time: 30:44) 

 

We will develop a model of a software artifact as a graph, I already showed you to 

examples of how to take a codes in a (Refer Time: 30:55) and write a control flow graph 

corresponding to that right. It is to be noted as we saw in that example that these graphs 

apart from vertices and edges could contain several different annotations labels right. So, 

here are some examples some of the vertices could be initial and final vertices it could 

have a labels of statements predicates associated with its vertices and edges as we saw in 

those two examples. In addition to that it could have data values data values for variables 

that are defined at particular statement data values for variables that I used at a particular 

statement such graphs are called data flow graphs I have not shown you an example in 

this slide, but in later lectures we will see what data flow graphs look like. 



But what is to be remembered is that they will typically graphs that model software 

artifacts will always have some kind of labels associated with their vertices or edges 

right. So, we want to be able to use one or more reachability algorithms to be able to 

design test cases for these kind of graphs right. 
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So, we will read a find what test requirement what test criteria are now specific to 

graphs. So, what is a test requirement? It just describes a property of a test path test path 

as it corresponds to in a graph. What is a test criteria? Test criterion is set of rules that 

define the test requirement. Then for example, if you take this graphs that we looked at 

earlier the test criterion that it describes is to say do branch coverage on the vertex u 

means the degrees of vertex is the out degree of the vertex u is 3, there are three branches 

going out of u right test cases to cover all three branches that is what we did here we do 

not test cases to cover all three branches. 

So, what is satisfaction? We see a particular set of test requirement satisfies a coverage 

criteria c if the test cases that are right for that test requirement satisfied all the test paths 

that need the requirement. Like for example, if my coverage criteria say branch coverage 

at mode u then these three test cases right completely achieve branch coverage for this 

particular mode u right. 
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So, moving on we will look at two kinds of coverage criteria related to graphs. The first 

coverage criteria that we will be looking at is what is called structural coverage criteria 

where we will define coverage criteria purely based on the vertices and edges in the 

graph right. 

They could be annotated with statements and so on, but we would not really use the what 

the statements are or the other annotations to be able to define the coverage criteria. We 

will purely defined in terms of just vertices and edges the next kind of coverage criteria 

would be data flow coverage criteria where we again look at graphs that are annotated 

with variables and so on and we will define coverage criteria, based on the annotations 

based on the variables and the values that they defined right. 
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So, in the next module I will begin with structural coverage criteria and walk you 

through algorithms and test case design for achieving various kinds of structural 

coverage criteria in graphs. 

Thank you. 


