
Software testing
Prof. Meenakshi D’Souza

Department of Computer Science and Engineering
International Institute of Information Technology, Bangalore

Lecture - 48
Testing of Object-Oriented Applications

Hello again, we continue with week 10 lecture. Last three lectures we discussed about if

I have a web application and I want to test for functionality at the system level where the

client software and the server software is put together what are the properties and

techniques we can test for web applications.

Now moving on what I would like to begin with this lecture is testing of object oriented

applications. If you see object oriented programming languages the most classical of

them being Java or even C++ are extensively used and even in fact, android code could

also be object oriented.

(Refer Slide Time: 00:58)

So, we will see generic testing of object oriented applications over the next few lectures

beginning with today. So, what is the outline that we are going to cover in the next few

lectures? We will cover the following topics I will begin with giving overviews of

features of object oriented software.

If you remember when we did mutation testing I had already given you several features

of object oriented software, if you missed that I urge you to go back and look at those

lectures because I will not be recapping them in these lectures following which we will

discuss about errors or anomalies that arise specific to features of object oriented

software especially inheritance and polymorphism. And then we will discuss testing of

object oriented software very unique graph models which are labeled Yo-Yo graph after

the toy Yo-Yo arise when testing object oriented software. So, we will see that model

today and we will also define several call coverage criteria specific to object oriented

software.

(Refer Slide Time: 01:52)

So, what have we done till now; in all the lectures that we have covered when it comes to

object oriented software. So, if you remember when we did integration testing, we

specifically saw how to apply graph based coverage for object oriented software

integration.

And in that if you consider unit testing which means testing inside each method that can

be done by using any traditional testing that we saw like graph based testing logic based

testing all of them apply equally well to unit test. And then we also I told you we saw

common object oriented terms and introduced them as they relevant to testing, to

reiterate it was not meant to be a thorough introduction to object oriented programming,

but only just a list of features as we would needed for testing and when we did mutation

operators specifically integration testing mutation operators we saw operators for object

oriented integration also.

(Refer Slide Time: 02:49)

So, now what I will do is I will introduce and recap some of the relevant object oriented

features that we will need for this lecture in the next couple of lectures. So, what do

object oriented software do? Once a central features that object oriented programming

provides is that of abstraction. So, abstraction let us you abstract the kind of information

that you want typically as classes and you focus on how the components are connected

that various abstract components are connected. We also discussed features like

inheritance and polymorphism when I introduced them last time they basically define

new connections that these abstractions offer and these are typically not found in of non

object oriented languages.

So, our module as we will see for object oriented programming please remember we will

not focus on testing inside a method what we are instead going to focus on is integration

testing. I will show you the four levels of object oriented testing and also show you

which part that we are going to focus on.

(Refer Slide Time: 03:54)

Before we move on what is abstraction and object oriented programs look like, the

central entity in abstraction are that of classes, classes represent data abstraction. In

addition to classes we have features like inheritance polymorphism, dynamic binding,

that also support abstractions, and how is a new type created? New type could be created

by inheritance and as the word says if it is a new type created by inheritance then

whatever is created is called a descendant of the existing type of abstraction. Now there

could be two kinds of new types that could be created you could have extension or you

could have refinement.

So, what is an extension? We say a particular class extends its parent class if it introduces

a new method name and it does not override any method from its parent or ancestor a

particular class. On the other hand refines a parent class if it provides new behavior that

is not present in the overridden method and it also does not call the overridden method

and in now along with that its behavior is semantically consistent with that of overridden

method.

(Refer Slide Time: 05:07)

Moving on we considered two types of inheritance, please remember all the

terminologies that I am defining currently now is irrespective of the specific object

oriented programming language that I use these are generic object oriented features that.

We will consider towards testing of object oriented software. So, there are two kinds of

inheritance one is called the subtype inheritance, this is famously called substitution

principle invented by this computer scientist called Barbara Liskov, who subsequently

won the turing award for this.

So, we say a particular class let us say class B uses subtype inheritance from class A, if it

is possible to freely substitute any instance of B for a and still satisfy an arbitrary client

for class A. So, we say B because it can be freely substituted for any A. So, we say B has

what is called is a relationship what do we mean by that that any instance of class B is

also an instance of class A. So, B can be freely substituted for class A. The next kind of

inheritance is what is called subclass inheritance where descendant classes reuse methods

and variables from ancestor classes without necessarily ensuring that the instance of the

descendant classes meet the specifications of the ancestor class.

So, two kinds of inheritance subtype and subclass - subtype means B is also class A can

be freely used like that, subclass means descendant classes reuse methods and variables,

but they do not have to meet all the specifications of a parent class.

(Refer Slide Time: 06:47)

Now, just to recap what polymorphic methods are because we would need this

extensively today we have already done this in one of the lectures, but I will recap it

once again. So, consider two classes A and B and let us say class B inherits from class A

and let us say both the classes A and B define a particular method m. So, m is defined in

A and m is also defined in B and in addition B inherits from A such a method m in object

oriented programming is called polymorphic method.

So, what happens now with polymorphic methods? Suppose there is an object X that is

declared to be of type A then during execution because B inherits from A the actual type

can be a or B whichever the type that takes is completely dependent on the execution that

happens right. This collection of methods which are polymorphic that can be executed

when a particular object of a particular type is called is called a polymorphic call set. For

example, in this case where there are two classes A and B and both define a method m

the polymorphic call set is A m in as it occurs in class A and m as it occurs in class B.

(Refer Slide Time: 08:03)

So, when while testing object oriented software we consider four levels of testing. We

consider class as the basic unit of testing not a method as I told you when we consider a

method as a basic unit of testing you could use any of the earlier coverage criteria that

we learnt graphs, logic, mutation testing to be able to do method level testing. For us

now focuses on a class level testing. So, with reference to class level testing for object

oriented software they could be four categories of testing. The first most elementary

category involves intra method testing; that means, testing a particular method.

As I just told you use any applicable condition that we have learnt till now to test

whether the method behaves as per its functionality this is traditional unit testing.

Moving up one level up from a method the next level of testing is inter method testing

where interactions between methods are tested. This is traditional module level

integration testing we have checked this when we did design integration testing based on

graphs in fact, we saw specific object oriented integration operators even for mutation.

The next is intra class testing that is testing within a class, what happens here? Tests are

conducted for a single class that fixed to be tested at a particular point in time usually the

tests are a sequence of calls to methods within a class. So, this class will define several

methods a test case for the whole class will involve all the calling each of the methods a

select set of methods and so on. Finally, the full blown object oriented testing feature is a

inter class testing where more than one class is put together and tested at the same time

usually to see how they interact. We will be considering inter class and intra class testing

in these lectures.

(Refer Slide Time: 09:58)

So, now before we move on actual testing we will see a couple of lectures later what I

am going to tell you for the rest of this lecture and in the next lecture is what are the

problems what are the difficulties, what are the anomalies, what are the faults that occur

due to the specific object oriented features of inheritance presence of polymorphic

methods and dynamic binding what happens in these cases what are the issues that can

come when we do inter class and intra class testing.

So, now before we move on the most difficult thing is when you have a large many

classes each defining its set of methods it is very difficult to visualize the actual sequence

calls the actual interactions that happen amongst these classes. I will show you examples

of how difficult it is. So, we want to be able to do that. So, to do that we assume that a

class encapsulates all the state information that I need this is a traditional way or nothing

related to object oriented software in any piece of program, what is the state of a

program? State of a program defines the values of all its variables along with the location

counter where the program decides.

So, in object oriented programming we assume that the class as an entityencapsulates all

the state information as a collection of state variables as it is done in other programming

language. So, now, the behaviors of a class; how do they come? Class is a static entity

not executable. So, the behavior of a class is implemented by a set of methods that use

these state variables. The interactions between various classes and methods, methods

could be inside the same class or it could be outside a class will occur in the presence of

all these features inheritance polymorphism dynamic binding and those are the features

we want to understand and visualize how the interactions have.

(Refer Slide Time: 11:49)

So, here is the first example consider this situation look at the left hand side of this figure

there are three classes W V and X and as per this picture V extends W, X also extends W.

W has a private variable called small by small named small v and it has two methods m

and n, V also has a method m which means this method m in V overrides the method m

in W. Similarly the method m; methods m and n in X override the methods m and n in W

minus; sign indicates as I told you earlier the attributes are privates and plus sign

indicates of the attributes are non private.

Now let us look at this piece of code on the right hand side. It is talking about some

function f that takes a Boolean argument V and it begins by saying that the declared type

of this object o is W and then there some piece of code dot dot dot read it as some piece

of code and then let us say there is a new statement which says if this boolean variable b

is true then you make o as what type V, if this Boolean variable is false then you retain o

to be of type W and later after some point let us say you call the method m for the object

o. Now we know that the method m and V overrides the method m in W. So, at this point

in line number 10.

We do not know which version of the method is called is Vs version of m called or its

Ws version of m called that is not clear. It will purely be dependent on what the value of

B is, this part here described by dot dot dot did it change B what happened to B. So, we

need to know. So, usually this kind of analysis provides challenges because m overrides

the m and V overrides the m and W at this point in time we do not know which code of

m got executed. So, this is the first kind of difficulty that we find in visualizing.

(Refer Slide Time: 13:51)

Moving on here is another kind of difficulty that you find with polymorphic methods this

is a slightly bigger piece of program. What does it have? It has three classes A B and C, I

have put them one below the other - A has how many variables four variables t u v and

w, and it also has six methods d g h i j and l just for simplicity sake we have retained

them a single letters they could be any method names. And then class B has one variable

x it has two three methods h i and k. And what do these arrows indicate? These arrows

indicate that the method h in B overrides the method h a similarly the method i in B

overrides the method i in A.

Now there is one more class C which has three methods i j and l. And again there are

arose from this high pointing to the i of B, going by the same interpretation read this

presence of this arrow as the method i in C overrides the method i in B, the method j in C

overrides the method j in A, the arrow goes all the way up to class A and the method l in

C if you go trace the arrow and go up all the way it method overrides the method l in A.

Is this clear that is what I have written here in the next slide.

(Refer Slide Time: 15:19)

The root class A has four state variables six methods we saw that right, four state

variables six methods. It also has two descendant classes B and C as I told you. Methods

of a are called in sequence which means what you assume that in the code of there is

some piece of code in a where method d calls method g, which in turn calls method h,

which in turn calls method I, which in turn calls method j and j in turn calls method a

that is what I have written here.

Now the state variables away as you can see in the notation are protected which means

what, they are available to the descendant classes B and C. B declares one state variable

three methods, C declares three methods. And we discussed this overriding which

method of B overrides which methods A, which methods of C overrides which method of

A and B.

Now, consider a situation like this what does this say? This says how to read this table

this says in the method h as present in class A two variables are defined u and w. And the

variable u that is defined in the method h for a is used by the method I for A. Similarly

the variable B is again defined in the method j present in a and method j also uses the

variable W. The method a variable V defined in j gets used by the method l in A. Now B

also defines a variable x in its method h B uses the variable x in its method i; C similarly

defines variable y in its method i and uses variables y and v in its method g and f is this

clear.

Now I claim that because there are these polymorphic methods i and k and h and the j

and l there is a problem with dataflow. How do you understand the problem with

dataflow? Here is the anomaly, suppose an instance of B is bound to an object o and let

us say a call to d is made, a call to d is made right. Now B’s d what will d do - d will call

g g will call h, but which version of h is called, B’s version of h is called right, B’s

version of h is called which means what - B’s version of h and B’s version of I is called.

If B’s version of h and i is called then you look at it here B’s version of h h what is the

variable that it defines it defines the variable x, B’s version of I defines nothing, but then

what do we want we finally, want A j because a in sequence I told you right g calls g

sorry d calls g which in turn calls h and i, but h and i are the B’s versions that are called

and I further calls what does j need j needs A w because it is going to use A w, but as

version of I and h were not called only B’s version of h and i were called and W was not

defined B’s version of h defines only X B’s version of I defines nothing.

So, that is what is said here B’s version of h and I are have called A u and A w are not

given values because only as version of h gives them values which means what the call

to a j can result in a dataflow anomaly it does not present at all. So, how will it use W

there will be a problem. So, these are the kind of false that we want to recover identify

and test for when we do object oriented program.

(Refer Slide Time: 19:15)

Now one last example before we move on where I introduced Yo-Yo graph formally to

you. So, Yo-Yo graph deals with a problem of which is the version of the method that

will be called. It is a very difficult problem to understand because the methods that can

be called can bounce up the calls of the methods can bounce up and down like in a Yo-Yo

that is what we will illustrate. So, what is a Yo-Yo graph you all might be familiar with a

Yo-Yo toy right this is string and then this top like thing where you can rotate the string

and when you release the rotating entity from the string it bounces up and down up and

down right.

So, what we trying to see is that the method call graphs across classes can bounce up and

down like a Yo-Yo will illustrate it for the example that we saw in this slide. So, before

that what is a Yo-Yo graph Yo-Yo graph is more like a tree it has a designated vertex

called a root and then it has some descendants. What are the vertices of the graph

vertices of the graph are not statements or anything like that they are individual methods

because we are focusing on method calls we focusing on call graph that deal with

methods. So, nodes are methods, methods could be new methods inherited ones or

overridden methods for each of the descendant.

What are the edges? As I told you edges are the method calls that are given in the source

code a directed edges present from the caller to the call. In addition we have two other

things there is a level that is given to each class in the Yo-Yo graph that shows the actual

calls made for an object if an object has a particular type of that level these are depicted

by bold arrows. The Yo-Yo graph also has dashed arrows which are lighter which talk

about the calls that cannot be made because the methods have been overridden. So, for

the example that is given here if you remember this method class A six methods class B

three methods class C three methods here is how the graph looks like.

(Refer Slide Time: 21:18)

So, I have just done the left hand side here that I am tracing with the cursor I have just

copied the same thing, but I have omitted the arrow is corresponding to overriding just

not to clutter the figure too much. What have I depicted here? Again it is the same

information classes a B and C are given here this is a list of methods that are present in

the class A this is list of methods that are present for class B and here is the list of

methods that are present for class C. As I told you methods and class A call each other in

sequence from top to bottom which means d calls g, g calls h, h in turn calls i, i calls j

there is no problem everything works fine because these are all methods within the class

A and the calls are absolutely fine.

But let us say you get this kind of visualization what happens here method d is called an

a d calls g, g calls h, but which version of h B’s version of h and B’s version of h in turn

calls B’s version of i which calls a A’s version of i and then calls j and independently k to

l call is present. Now if you see there is a d link because I do not know what to do now

this makes it even worse. So, say we start similarly we say d cause g, g calls h and h does

not even call B’s version it called C’s version of I and C again calls B’s version of i

which in turn calls as version of i and As version of i now goes all the way down and

calls js C which calls B’s k which calls l C and so on.

So, you can see this you can think of as a Yo-Yo unrolling itself, this is a Yo-Yo bouncing

back, this is a Yo-Yo bouncing back and unrolling itself. So, the pattern of calls can grow

up and down like a Yo-Yo. The dashed lines as I told you here are calls that cannot be

made due to overriding, but if they had been made it could have been anomaly free that

is what we are trying to say here.

(Refer Slide Time: 23:25)

So, what I explained to you is what is written here in A’s implementation there is the

sequence of method calls and B’s implementation there is the sequence of method calls h

calls i and i calls its parent version of i as I told you here right I calls its parent version,

parent is A so it calls its parent version of i and k calls l. In C’s implementation I calls

this I of C calls its parent version of i which is B’s i which in turn calls A’s i and then the

call to j is made. So, the calls of methods go flat, bounce up, bounce down like a Yo-Yo

hence the term Yo-Yo graph.

(Refer Slide Time: 24:06)

Now, if the top level call is made then there is absolutely no problem, for second and

third level you could have data flow anomalies as we saw in this example. So, this is

another kind of visualization that we will like to work on.

(Refer Slide Time: 24:17)

I will stop here for this lecture. In the next lecture I will discuss with you about specific

faults and anomalies that can occur due to inheritance and polymorphism.

Thank you.

