
Software testing
Prof. Meenakshi D’Souza

Department of Computer Science and Engineering
International Institute of Information Technology, Bangalore

Lecture – 45
Testing of Web Applications and Web Services

Hello again, welcome to week 10. We are going to start on something completely new

this week. As I told you towards the end of the last lecture of week 9 we saw what we did

till now we mainly did coverage criteria and so various kinds of testing using this model

or that structure gloves (Refer Time: 00:30), sets and so on. This week I am going to take

classes of applications we are going to start with web applications web software move on

to object oriented applications, we learn a bit about those applications, we learn problems

that are unique related to testing about each of these applications. We will compare and

see the coverage criteria that we have learnt so far whether they can be directly used to

test these applications or not and if not I will tell you new algorithms that can be

specifically used to test applications.

So, we are going to begin this week by looking at testing of web applications.

(Refer Slide Time: 01:05)

So, this is an overview of what we are going to do over the next few lectures. Today I

will introduce you to relevant aspects of web applications we will see what they are and

then we will also discuss what are the specific issues that come with testing of web

applications.

And then when it comes to testing it you helps to have the following broad categorization

we will test what are called static hypertext websites, websites that remain the same look

the same to almost every user who accesses it all the time basically have nothing more

than HTML files. And then when it comes to testing its important to separately consider

dynamic web applications. In dynamic web applications the content of the web page is

created dynamically by an underlying application or a program. Here usually the kind of

code that is written for the server side is very different from the kind of code that is done

for the client side hence the testing that we have to do for the client side and server side

are also very different. So, this is will this is a structure of what we are going to see about

testing of web applications put together.

(Refer Slide Time: 02:12)

Today, I will begin with introducing you to the relevant aspects of web applications.

Please remember that this is not meant to be a comprehensive introduction to what a web

application or a web software is, feel free to look up other courses or online material for

that, I will just give you a birds eye overview of what it is and consider it as understood

from the point of view of testing. Our issue will be to focus on testing not to thoroughly

introduce you to web applications.

So, what is a web application for us? For us a web application is a program written in

some language right, but the program differences is not deployed in the computer it is

deployed on the web. What do we mean by its deployed on the web? It is basically

deployed in a computer that is meant to act as a server for further deployment or

availability on the web or the internet. What is the user interface that this kind of web

application uses its basically HTML stands for hypertext markup language standard

language that people use to write web pages; web deployment means what, its available

on the internet worldwide as long as you have access to it you have access to this

website.

And typically a web application how does it talk to a user an end user? It talks to an end

user through a server that accepts requests from an end user or a client through HTTP -

HTTP stands for hypertext transfer protocol it is a standard protocol that is used in the

internet and it also returns responses which would websites basically your information

provided by a web page through HTTP again. So, this is a web application for us. So, it

is a lot like a classical client server application the only difference is the server is a web

server meant to host the application on the internet and the client runs in a web browser.

What a web browsers? Internet explorer, Mozilla, Google chrome and so on.

So, here are examples of classical web applications we all use web mail some form of the

other Gmail, Microsoft office outlook, yahoo mail, hotmail and so on, we also use a lot

of online retail sales amazon flipkart and so on and we use wikis these are various

categories of web applications and lots and lots more are also there.

(Refer Slide Time: 04:28)

There are a slightly special class of web applications called web services. What is a web

services? Web service like a web application is another program that is deployed on the

web, it accepts XML messages that are wrapped in soap or restful services. Usually it has

no interface with human it directly talks to programs or clients and the service must be

published so that other services and applications can discover a web service.

In our lectures when we focus on testing we will not really explicitly consider web

services as a standalone separate kind of web application, we look at generically testing

web applications as we introduce them here.

(Refer Slide Time: 05:10)

So, what are the general characteristics of such web applications or web software? I will

use the term web app, web application, web software all these terms synonymously they

all mean the same for us. Web application is composed of several independent loosely

coupled program components.

How do these loosely coupled program components talk to each other, how do they

constitute one web application? They communicate with each other through message

passing the interface that they use is message passing interface and these messages from

the application always go through dedicated entities called clients and sometimes they do

share memory, but it is very restricted it is through what is called session objects and the

definition of a state of a program we know what it is it means the class of all set of all

variables of a program and a location counter, but here the state of a program as a web

application is usually quite different does not correspond to the classical notion of a

program state.

As I told you because it consists of independent loosely coupled components a web

application is a distributed or a concurrent application and it has several components

each of them very small and not only that each of these components could be developed

or written processed using a completely different technology. For example, somebody

could do JSP java server pages somebody could do, ASB somebody could just write

Java, Javabeans, Javascript, Ajax, PHP, HTML if you go and search for web technologies

and web applications you will find all these terms through and across.

My goal again to reiterate is to not to exhaustively introduce you to these terms, but to

more bring it up as one of the characteristics of web applications that when we put them

all together to test we have to handle in our tests several different technologies that come

from completely different domains that is important to remember.

(Refer Slide Time: 07:09)

Typically when I consider a software any piece of software that you have what are the

various ways of deploying it this is not specific to web applications or web software, any

generic software you could bundle a software in which case its usually pre installed on a

computer.

Like for example, if you buy a package if you buy a computer then the operating systems

in the computer comes bundled along with it its pre installed the way you want it you

could shrink wrap a typical example for this is you buy the software and install it like an

antivirus software that you would buy and install or you would have a contract software

where you have access to the software, but for a specified period of time that you buy the

contract for and you could have embedded software which is usually installed on a

specific purpose special purpose hardware device like in a microwave oven in a car, in an

aeroplane and so on. And it typically directly communicates only with sensors and

actuators and the embedded device does not communicate with the user.

And then now the focus of this lecture is what is called web software, how is it

deployed? It is executed across the internet through HTTP protocol typically hosted by a

dedicated server for this purpose called the web server.

(Refer Slide Time: 08:22)

Now, let us look at web application consider the typical architecture of a web

application. The architecture has several layers where separation of concerns happen

there is something called the higher one of the higher layers of the architecture is a

presentation layer where the HTML and UI output are visible then comes the layer that

contains the data called the data content layer where the actual computation and access to

data happen.

Below the data content layer is a data representation layer where the data stored and

retrieved in memory and finally, you have data storage layer which represents permanent

data storage that happens because of a web application. Testing each layer separately is

important and what is also important is to do system level testing where you test for

integration across these layers that do separation of concerns and a web application. Here

are some generic issues with web applications there as I told you a heterogeneous

dynamic distributed and because they are available freely across the internet typical

expectation is that they must be of very high quality they cannot be slow, they cannot

have a bug, they have to be reliable, they need to respond very quickly.

(Refer Slide Time: 09:16)

So, their quality attributes and expectations from the software is very high, but you while

know by experience that there are so many low level software that actually hinder the use

of these web applications.

(Refer Slide Time: 09:49)

Now, let us move on and discuss specific issues related to web applications as I told you

all web applications and web software use hypertext transfer protocol HTTP. What do we

know about HTTP it is a stateless protocol.

What do we mean by it is a stateless protocol? Suppose there is a new HTTP request it is

completely independent of the history, it is completely independent of the previous

requests the requests before that and so on. So, if it is a stateless protocol how do people

manage state when they deploy web application you all might have heard of the term

cookies session objects and so on right. So, those are basically entities that web

programmers or web app developers use to manage state information whenever needed.

The next is web server typically has very little information about where a request comes

from it could be from malicious client, it could be from a genuine client. Typically you

do lot of authentication and authorization, but still there is very little information about

where exactly the request is coming from and what happens to the response in turn. Web

software as we discussed earlier its extremely loosely coupled right, extremely loosely

there is importance to that word why, there is something called tightly coupled and

loosely coupled here I have one more qualifying adjective I say it is extremely loosely

coupled why is that so because it is coupled through the internet which means what the

software is physically separated in space it does not reside in one entity, it does not reside

within one server. It is also coupled to diverse hardware devices it could be anywhere in

any part of the world and as I told you its written using diverse technologies and a

diverse set of software languages.

(Refer Slide Time: 11:36)

Let us look at all the techniques that we have learnt so far and analyze one at a time

about whether any of them will be useful for testing web software. What did we begin

the course with we start graphs to start with, but what were the graph models of software

artifacts that we considered we considered control flow graph, we considered call graphs

and so on if you see none of these kind of models apply for system level testing of web

application.

Of course you could consider one individual program that is written as a web application

and if you are doing unit testing for that program then you could consider the control

flow graph do your coverage criteria, but that is not what we talking about, we talking

about system level testing of a web app. In that case working with control graph or call

graph does not really apply because the program is distributed across the internet. The

other thing is we also learnt about state machines the specific graph models that model

the state behavior of software. Here state behavior of a web application if you think

about it there is some part of the server state, there is some part of the client state,

different clients have different states. It is quite a hard task to model the state.

Typically all the next important issues are related to RIPR model or controllability and

observability, typically both controllability and observability for web software is very

low why is controllability low because all inputs please remember go through HTML

files right. So, if I have to control an input I am talking about controlling the entire

HTML file of an entire webpage it is going to be difficult to provide inputs that can be

controlled within a user and once you provide an input let us say you manage to provide

an input, you managed to get controllability the next is to observe what happens in this

for the state of us a web program which is hosted in a web server. It is very difficult to

get access to server side details for good reasons it is not secure enough and typically do

not want to, we do not know where the memories are where the file is where the database

is. So, from the point of view of testing observability and controllability becomes very

low, so testing becomes difficult.

Now the other kind of software artifact that we learnt where logic predicates, but it is not

clear what kind of logic predicates it can be effectively used to do system level testing.

Again the last one that we learnt was related to mutation operators to the extent that I am

aware of there are no known mutation operator specifically for web software. So, it looks

like most of the techniques that we learnt cannot be directly put to use, we will use graph

based testing to some extent, but only for restricted websites that are static in nature the

rest of them we really have to understand or develop pretty new techniques that could be

based on the techniques that we learnt so far, but none of the ones that we have learnt so

far directly apply.

(Refer Slide Time: 14:35)

So, now we will revisit the specific problems of web applications because it is useful to

know when we are designing testing techniques. So, as I told you they are very

extremely loosely coupled over the internet this diverse hardware and software and I told

you HTML forms a created dynamically by web applications.

So, there is very little controllability and observability on the input. The user interface

that is provided through a HTML file can vary and its created on demand based on the

creditions and users can change the flow of control arbitrarily in the middle of a

transaction as a page is loading somebody could press a back button or a forward button

could press a refresh button right that is why when you handle secure transactions like

bank and that you explicitly get messages saying do not press back button. But typically

for a normal web application there is no expectation that nobody will press the back

buttons.

So, as your testing while your input is executing while your program is running if the

control changes then what you observe may not actually correspond to the actual web

app or the web software behavior at all. So, it is quite a dicey thing. And the other thing

is that dynamically new software components can be added into a web application. So,

all these are issues.

(Refer Slide Time: 15:53)

When it comes to testing we prefer to bucket web applications into three different

categories - will separately deal with what we call static hypertext websites which are

basically playing HTML files that are written once put on the web server deployed and

not touched. And then will separately deal with testing dynamic web applications on that

will do separately client side testing and separately server side testing. As I told you we

really will not exclusively consider testing of web services we will generically deal with

testing of web applications. The last topic here we will not specifically consider it.

(Refer Slide Time: 16:33)

So, just to really find a few terminologies that we will need for the rest of the few

lectures for us a web page contains HTML content and it is typically viewed in a browser

single browser window. It can be a static HTML file or it could be dynamically generated

by using JSP ASP or any other kind of web software.

A web site is a collection of web pages static and or dynamic and is associated software

element that are related semantically in a meaningful way by their content, and how are

they related syntactically. They are related syntactically by hyperlinks and other

mechanisms for passing control from one web page to the other hyperlinks forms and so

on. A static web page never changes it is the same to all the users all the time as long as it

is available usually stored as a HTML file on a dedicated web server, in contrast a

dynamic web page is created by a program or a web program web software on demand, it

contents and structure typically depend on previous inputs from the user state of the web

server other inputs like where the user is from what time of the day, what is the data

provided by the user and so on.

(Refer Slide Time: 17:53)

For us when we test web applications it helps to first think back and understand what

will a test case for a web application be. A test case for a graph will be a path, a test case

for a logical predicate will be true or false values to the inputs a test case for mutation

based testing would be any value that kills the mutant and so on. Similarly what is a test

case for a web application a test case for a web application is basically a sequence of

interactions between components that reside on the clients and the components that

reside on the server, how are they given? Test case is usually depicted by a path that

contains states and transitions through the various web applications, these paths have to

be generated for static and dynamic websites for static web pages, it is easy to do for

dynamic websites it can be challenging mainly because as I told you, you could have

users changing the flow of control arbitrarily. So, if you generate a particular dynamic

web content halfway through the content being fed into the software as an input the

nature of the software itself could be changed by the user.

So, just as a recap what is the test case a test case is basically a sequence of web pages

which are given as a transitions through the web applications easier to create for static

websites little more difficult to create for dynamic websites.

(Refer Slide Time: 19:24)

So, we will begin by looking static websites in this lecture. Next lecture I will begin by

doing dynamic websites. Since static website what is a web page look like there is no

program involved at all please remember that, maybe there is some scripting involved

the ultimate contents to test is a set of plain HTML files that never will. This is not

program testing because there is no program, but what is this testing do it basically

checks that all the HTML connections are valid right, if one hyperlinks another one that

connection is valid and it goes to the intended page not only does it go to the intended

page you also check that the particular hyperlink or a connection that is there available

from a website does not go to any URL that is dead or defunct or that are no longer valid.

So, such kind of testing should also include testing for what are called dead links. Dead

links are those that are links hyperlinks to URLs that are not valid in (Refer Time:

20:25). Typically when it comes to system level testing of web applications people also

evaluate several non functional parameters they test the load of a system, classical

example would be let us say use IRCTC web application, load testing would be to let us

exercise maximum number of users that the system can scale up to let everybody log in

and see if the system is still able to smoothly let the person transact and book his or her

ticket the way he or she wants. Another thing is performance evaluation which basically

talks about the faster the efficiency of response to of a web application.

The third is access control issues in the sense that you need certain kind of accesses to be

able to access certain kind of dynamic web page. Like for example, if you are accessing

your bank webpage before you actually get down to the dynamically created content that

gives you your user account details your access as a user needs to be authenticated by

means of a login and a password. So, system level testing of web applications also

include these non functional parameters, our focus in these lectures would be on

functional testing of system level parameters, so we will not really look at load or

performance testing in this course.

(Refer Slide Time: 21:41)

So, when it comes to static website what is the graph, what is the model of testing that

we use? It is not too difficult to see that graph models as we saw will always work of

course, this is not call graph or a control flow graph this is a different kind of graph.

What will be the nodes or vertices of this graph? The nodes of vertices of these graphs

are the various web pages each individual page. What are the edges of these graphs? Let

us say you are in one particular page there is a hyperlink you click on that hyperlink you

go to another page then you say that there is an edge from the node corresponding to the

first webpage to the node corresponding to the second web page. So, edges are HTML

links.

And how do you build such a graph you typically build the graph by starting from an

introductory page and static pages they will usually be a index dot HTML or a welcome

dot HTML which is the beginning page of the static website. You start from there do a

breadth first search recursively by looking at each link from that page and then go to the

pages that it links to again do a BFS to the links of that page and so on till there are no

further links to be explode. Once this graph is generated what is the main aspect that is

tested? The main aspect that is tested is classical edge coverage what do edges of this

graph represent is each link working fine.

So, edge coverage basically tests for traverse each hyperlink in the static web site. So,

testing static web sites that is about it there is nothing much you generate a graph

vertices of the graph are web pages edges of the graphs are hyperlinks and then you do

edge coverage in the graph. This basically tests for static website working correct,

because there is nothing like performance load, there is no dynamic data that is it we are

done with system level testing of static websites.

(Refer Slide Time: 23:29)

Now, the next lecture what I will tell you is let us move on and look at dynamic web

applications. When it comes to dynamic web applications as far as testing it concerned as

I told you it helps to distinguish between the client side testing and server side testing.

So, we look at these two independently and see some new techniques of technologies or

algorithms that have been developed for client side testing and for server side testing and

as I told you a couple of times before in this lecture we will not look at testing web

services exclusively.

So, I will come back to you in the next lecture for testing a dynamic websites.

Thank you.

