
Software testing
Prof. Meenakshi D’Souza

Department of Computer Science and Engineering
International Institute of Information Technology, Bangalore

Lecture – 44
Software Testing Course: Summary after Week 9

Hello there, we are in the last lecture of week 9. What has we been doing for the past two

weeks if you remember I have been doing syntax based testing or mutation based testing

for the past two weeks. This sort of pretty much brings us to the end of the core of test

case design algorithms that I wanted to teach you as a part of the course. At this point we

are done with three-forth of the course, we have three more weeks of lectures pending

and it is a very good time to spend one video trying to look at what we learned from the

beginning and where are we going to go from now.

So, that is what this lecture is going to capture, it is going to give you a summary of the

course as it is after week 9.

(Refer Slide Time: 00:52)

So, in the beginning when I started lecturing at the beginning of the semester what did I

commit to. I told you this is exact replica of the slides that we had shared at that time, I

told you that will cover algorithms and techniques for test case design how are we going

to do it we going to take software artifact create models or structures out of them and

based on these models or structures we are going to see techniques for test case design.

And then what are the structures that we see we saw graphs as models of artifacts, we

saw logical expressions, then we only focused on the input space. And then finally, we

focused on the syntax or grammar of the software artifacts.

The test cases that we designed can be used for black box when it is based on

requirements and can be used for white box when it is based on source code.

(Refer Slide Time: 01:40)

And then these were the contents of the course that I presented to you at the beginning of

the lecture series right in the first week. So, we did begin by introducing what software

testing is motivating it then I told you what are the process levels, what are the various

set of (Refer Time: 01:57) terminologies that you will encounter in testing. After doing

that initial bit the main part of the course the technical part of the course that we focused

on was related to techniques and algorithms for test case design.

We did graph based testing we did two kinds of coverage criteria purely based on graphs

- structural coverage criteria, data flow criteria along with this I gave you a good amount

of basic graph traversal algorithms depth first search, breadth first search, strongly

connected components topological sort and so on. And then what we did we took graphs

for source code told you how to draw control flow graphs for various design entities we

took graphs for design elements which were basically call graphs sequencing constrains

and so on. We took graphs for specifications and then saw how to apply these coverage

criteria on these graphs.

Then we moved on to a next structural model logic based testing. I introduced you to the

basics of logic predicates clauses and then we looked at coverage criteria based on logic.

We saw the most useful coverage criteria they have a predicate coverage clause coverage

and active clause coverage then we applied logic based coverage criteria to source code

for specifications and on finite state machines.

(Refer Slide Time: 03:11)

We moved on we looked at black box testing so to say, there we focused only on the

inputs and outputs the space of inputs and then we modeled the inputs and wrote test

cases for coverage criteria based on various characteristics of the input domain. Then in

the past two weeks I have been focusing on syntax based testing which focuses on the

underlying grammar of the programming language or the software artifact mutates or

makes changes to that and writes test cases to kill the mutants.

Then the course in the beginning as I committed to you I said you learn how to test

object oriented applications how to test web applications embedded software GUI

graphical user interface with or without using these criteria, will see the popular state of

the art issue mainly like a survey of each of these categories. Finally, I would like to end

the course by presenting symbolic and concolic testing to you.

(Refer Slide Time: 04:09)

So, these were the course contents exactly as I had given you in the beginning of the

course. Now I would like to spend some time looking back and thinking about what we

have done how does it relate to software development. Here is a popular model of

software development that is still predominantly used even in this agile development

world it is called the waterfall model good old software development lifecycle model

begins with requirements, goes on to do architecture and design, then people write code

they also unit test their code then they put the things together and do integration testing

system testing, collectively called as testing phase waterfall does not really distinguish

between the kind of testing that you do. Finally, after the software is ready its released

and then maintained.

In the waterfall model you assume that requirements a baseline before you do

architecture and design you finalize the architecture and design before you write coding

and when you have begun testing your code is more or less ready. There is not much

going back up and down back and forth that does not happen.

(Refer Slide Time: 05:11)

Testing as we saw in this course is predominantly related to another software

development lifecycle model called V-model which is what is given in this cycle in this

slide. So, what is V-model do it takes the waterfall model as it exists here and sort of

bends it to look at the other side, it focuses into testing c splits the testing to see what are

the various stages of testing that will go does not really particularly focus about release

and maintenance its of course, there, but the model that depicts the level development

lifecycle let us go this part release and maintenance. So, takes requirements architecture

and design coding, takes testing and elaborates testing to let it span across other phases

this is how it looks like. So, it always begins with requirements like in waterfall model

followed by architecture in design again like in waterfall model, followed by I put this

extra term where we model tries to focus on called low level design.

So, here we do system level design, here we design into the system components each

individual things is almost like code then people do coding along with coding they do

unit testing off the code after that they do integration testing where they put together the

software components and test it, and after they put together and tested the software

components they put the hardware along with the software and then do integration

testing and then they put the whole thing in this system and do system testing. Finally,

when the system is ready they do what is called acceptance testing we have seen all these

terms before. What is the V-model say? Let us look at these dashed lines with arrows in

the V-model.

It says that integration testing is related to low level design, system testing is related to

architecture and design, acceptance testing is related to requirements. What is the legend

for this dashed arrow? It says input for test case design that is if you want to design test

cases for integration testing where you get data or inputs to design your test cases from

you get it from the low level design. Similarly if you want to design test cases for system

level testing the source set of software artifacts that give you inputs to design your test

cases come from architecture and design documents similarly for acceptance testing

which is mainly black box testing the source design for test cases come from your

requirements doc.

What did we focus on in this course? We focused on the V-model, in particular we

focused on how to use these various inputs from various software artifacts across the

development lifecycle to be able to design test cases that we could use for coding and

unit testing, we could use for integration testing, system testing or acceptance testing.

(Refer Slide Time: 07:58)

This is again what I told you right in the first week is just a recap these were the various

types of testing we discussed unit testing and integration testing just now and after that

come system testing and acceptance testing which we are all discussed as a part of the V-

model we also discussed what is called beta testing.

(Refer Slide Time: 08:15)

And I also told you at the beginning of the course that good old testing terminology says

that there are two broad methods of testing black box and white box. Black box does not

look into the structure of the design of the core assumes the design or the code to be a

black box designs test case is purely based on inputs and requirements white box designs

test cases by exploiting the structure of the design or the code. So, black box testing

applies for unit testing integration testing system and acceptance testing. White box

testing also applies at unit testing integration testing and systems testing phases in

addition a whole set of other testing usability, performance, load, beta testing, stress

testing, they are all black box testing techniques.

Back in the V-model they happen here at system testing or acceptance testing test cases

for these kind of entities which test for non functional qualities of a software come from

architecture and requirements and design. We did not look at any of those in this course I

will teach you, tell you a bit of GUI but not the rest.

(Refer Slide Time: 09:20)

We also discussed types of test activities just begin with test case design followed by

automation, execution and evaluation. What did we do in the course as far as types of

activities are concerned we focused a lot on test case design basically criteria based test

case design and I told you how to do automation in execution using the tool called j unit

which applies for java programs.

(Refer Slide Time: 09:44)

This slide gives a very good summary of what we have done exactly till now in the

course. So, we took software artifacts which could be source code integrated source code

which is large code that includes all the modules put together methods put together

classes put together, we took design elements, we took requirements either as documents

or as finite state machines, then we took inputs details about inputs then we chose four

different kinds of model or structures. We modeled these software artifacts as graphs,

defined coverage criteria over graphs two kinds structural and data and then so how to

apply it to source code to design elements and to finite state machines

After that we took logical predicates which come from decision statements in the source

code and from requirements or guards in finite state machines and define coverage

criteria on logical predicates clause, predicate, combinatorial coverage, active and

inactive coverage criteria, we applied it again to test source code finite state machine and

specifications. Then we focused on black box testing only on input spaces, define criteria

that partition the input spaces and applied to test the software artifact based on the inputs.

Finally, we did mutation testing which was syntax based testing we saw how to apply to

source code both within a method and at the software integration level, we saw how to

apply it to design integration specifically we saw one module on object oriented design

integration, finally, we saw how to apply to grammars for inputs.

(Refer Slide Time: 11:24)

Along with this we also saw lot of the classical terms and testing that you would

encounter in any old test textbooks related to source code these are the terminologies that

I introduced you to cyclomatic complexity, independent paths, basis path, testing

decision to decision paths. I also told you in the context of white box coverage statement

coverage branch coverage loop coverage, we saw them as node coverage edge coverage

and prime path coverage. Then when we focusing on design integration testing we learnt

about interfaces, types of interfaces, message passing shared, variable and so on. We

learnt about what stubs and drivers are when it comes to integration testing we learnt

various approaches to integration testing incremental top down bottom up big bang and

sandwich. When it comes to black box testing techniques we learnt about equivalence

partitioning, decision tables and boundary value analysis.

(Refer Slide Time: 12:17)

In this process of lecturing to you about test phase design and criteria we also saw a good

number of formal models and languages we saw the basics of propositional logic and

predicate logic. I introduced you to finite state automata, we saw regular expressions we

saw context free grammars.

(Refer Slide Time: 12:41)

Of course, not very rigorously at a shallow level, but we did introduce them formally and

saw results in examples about them and we saw several examples of source code several

examples of design constraints like sequencing constraints, preconditions, post

conditions. We saw examples of finite state machines for specifications and XML for n.

(Refer Slide Time: 12:54)

What are we going to do now from week 10 onwards for the remaining 3 weeks, I will

introduce you to testing of web applications object, oriented applications wherever

applicable will come back and look at how the coverage criteria we learnt applies here. I

will also introduce you if time permits to testing of embedded software, security testing,

and about GUI testing. I am not confident at this stage that I will be able to cover all of

them we will try to do as much as possible, but whatever we do we will do it rigorously

and thoroughly and I would like to spend some time in the last couple of weeks doing

these two techniques which are called symbolic testing or concolic testing which have

been there for the past 30-40 years, but they have surfaced now in a big way and they

give you a very nice set of algorithms to do path based coverage in testing and they also

do the instrumentation for you.

So, this is where we stand and this is what we are going to do. I hope this overview

lecture was useful for you to sit back and reflect where we are in the course, what we did

till now and what are we going to do from now on. So, next week when I meet you the

first video will be on testing of web applications.

Thank you.

