
Software testing
Prof. Meenakshi D’Souza

Department of Computer Science and Engineering
International Institute of Information Technology, Bangalore

Lecture - 43
Mutation Testing: Grammars and Inputs

Hello everyone, welcome to the next lecture of week 9. So, with this lecture I will finish

mutation testing or syntax based testing.

(Refer Slide Time: 00:20)

So, this is, this was what we had as an overview picture of mutation testing for various

software artifacts. So, I said through the span of my lectures we would look at mutation

testing along these lines.

(Refer Slide Time: 00:34)

Here is an update of what we have done and where we are. So, what did we discuss?

Mutation testing or syntax based testing is of two kind one directly based on grammar

the other based on mutating programs. Grammar based testing can be applied for

programs and a mutation can be applied for programs. Grammar based testing cannot be

applied for integration but mutation based testing can be applied for integration. Both

grammar based and mutation based can be applied for specifications and again both

grammar based and mutation based can be applied for directly testing input spaces.

What have we done? We completed all the things that are marked in green we did

grammar based testing for programming languages at an abstract level, I just told you

what the coverage criteria on grammars are. We also did mutation testing for programs at

the unit testing level and later on we specifically looked at mutation testing for design

integration of generic kind and we went on and looked at mutation operators for

specifically testing object oriented integration like for a language like java.

I told you that next we will do what is called input space partitioning based mutation

with XML as one case study where I generate mutation based on grammars of input

spaces. Specifically for grammars of XML formats for inputs as many languages. So,

that will be the focus of this lecture. And as we continue to say the ones that I strike out

we will not do because it is slightly outside the focus of this course.

(Refer Slide Time: 02:05)

So, this lecture we are going to look at grammars for inputs. Grammars for inputs are

again given in back us nor form as a context free grammar specifically or as a regular

expression and they when are they used what are they used for, they used for defining

precise syntax of how the inputs look like. Most of the times inputs may not be just a

simple integer or a Boolean value or a floating point number, inputs will have a lot of

structure input could be a entire webpage the form that you filled into a web page the

data that you read from a database it could have a lot of structure. Inputs with a lot of

structure are described using formal languages specifically regular expressions or

grammars. For example, consider a program that operates as a part of a banking system

and let us say that program processes the sequences of deposits and debits.

So, the format of deposit will look like this, it will say deposit which is like a keyword

which tells you the action to do this amount into the account. Similarly the format for

debit would be debit which is like a keyword this amount into this account, is that clear.

Now what are the transactions that you can do as a part of a bank account, you can either

deposits and amount into an account or you can debit an amount into an account and you

can repeat this transaction any number of times in any order. So, this is the regular

expression that describes that input transaction sequence. So, it says the input transaction

is given as a regular expression which is the star of two entities.

The first expressions is deposit account amount which says deposit this amount into the

account, the second expression says debit account amount which means debit this

amount the given amount into the account there is a nor connecting them which means

you can do one of these actions and after that there is a star. Star in regular expressions as

we saw indicates that you can do zero or more occurrences in any order of either this or

this which means you can either deposit a given amount into an account or you can debit

a given amount from an account and any bank transaction is a sequence of inputs of

arbitrary deposits and debits.

Now, this could be an input. How do you read this? You say deposit into the account

number 739 this amount 12.35 dollars, similarly you could say debit into the account

number 544 the amount 20 dollar.

(Refer Slide Time: 04:36)

So, regular expressions this is simply given as regular expressions, but sometimes as we

saw regular expressions may not be enough and you might need slightly more expressive

structures like context free grammars or arbitrary grammars which can be expressed in a

normal form like Backus-Naur form. So, here is a same sequence of input transactions in

this slide I had given it to you as a regular expression here I am giving it to you as a

grammar, how do I read it, I read it as follows.

So, what does a bank transaction? Bank transaction is a sequence of zero or more actions

denoted by action star then the next rules is action could be a deposit or a debit dep for

short form for deposit, deb short form for debit. A deposit is basically deposit the key

word deposit some amount into an account number, debit is similarly the key word debit

which depicts a fixed action of an amount into the account. Account is typically a 3 digit

number, amount is given in dollars or any currency and its one or more digits followed

by a decimal point followed by at least two digits, digits could be anything from 0 to 9 is

that clear. So, I using this grammar I could derive an expression which looks like this.

So, I could say either deposit a particular amount which is this into this account what is it

say, it says account is always a three digit number and amount is always in dollars in this

case it has 0 it has one or more digits which is denoted by digit to the power of plus

means 1 or more digits it cannot be 0 digits because you have to deposit or debit a

nonzero number and it could also have decimal digits up to 2, decimal point two, is that

clear.

(Refer Slide Time: 06:25)

So, how do I derive tests from these grammars tests are basically input strings that are

derived from the grammar how do I derive? You follow the normal notion derivation that

we saw for grammars when we began mutation testing last week.

So, what is the normal notion of derivation go like? You begin with the start symbol it

designated start symbol and you use the production rules keep applying production rules

by picking up one non terminal that is available at any given point in this string derived

so far replace that non terminal by picking an appropriate rule that replaces that non

terminal with another string. Keep doing this still you are left only with a string of

terminals in other words no more non terminals to replace when you stop there that is the

string that you derive and that belongs to the input space corresponding to the grammar

that is given for that particular software artifact.

Whenever grammar is not available you might wonder how are we going to use it usually

it is very wise to be able to as a tester derive the grammar yourself from informal

description of the input given. Some description or the other of the input will always be

given because the software artifact and its input have to be described otherwise software

development does not progress, but to be able to automatically derive tests you need

grammar notations which are syntactically formal notations for describing inputs.

If it is not there then as a tester it is completely worth spending some time deriving the

grammar from the informal description given. In the past empirical studies I have shown

that just this exercise of deriving grammar from an informal description of the input

sometimes unearths nontrivial bugs or vulnerabilities in the inputs to the software. So, it

is a valuable exercise in its independent right and is also useful for mutating and

producing inputs to a grammar.

(Refer Slide Time: 08:15)

We will see XML as a specific example because it is a very popular input format that is

used across several different applications. So, what is XML? This module is not intended

as an exhaustive introduction to XML please feel free to read up details about XML from

other resources, I assume that you know some basics of it and I will use it mainly as a

language to describe inputs and as a case study to show you how test cases are generated

from the input.

So, XML expands out to extensible markup language, it is a language for describing

inputs that have a lot of structure in them, its popular across many applications typically

its popular across web applications and web services. Of course, I basically work with a

lot of embedded software design and development and if you see almost all the

languages that I work with which is Simulink, AADL which are appropriately embedded

design and architecture language they all have XML to describe their input language

format. So, XML like all other structured formats has a built-in syntax or a grammar to

describe.

The built-in syntax or grammar that is available in XML it is what is called a collection

of schemas we will not introduce schemas thoroughly, but you can look up schemas from

any standard book or reference on XML. In addition XML inputs use a notation called

tags what are tags you can think of tags as some kind of textual description of data and

the textual description of data is enclosed within angular brackets, angular brackets

means this is the opening of the tag this is the closing of a tag each tag comes with this

angular bracket and then for each open tag there is a corresponding closed tag inside

each tag the some kind of a structured text that is described.

Typically we note that all XML messages must be well formed, what do we mean by

that? They typically have a single document element with that other elements properly

nested within it there is a structure that is described in a nested fashion and every tag as I

told you that has an opening tag must also have a corresponding closing tag. So, in this

sense if you know HTML which is an old language it is a lot like HTML it is another

markup language, but of course, it has a more, a lot more sophisticated richer language to

describe structured data formats.

(Refer Slide Time: 10:33)

So, here is a simple example of how an XML message for books will look like. So, what

does it say? If you ignore the first four lines we will come back to that it says you

concentrate on this. So, it says book opening tag is here the corresponding closing tag is

here. So, the opening tag is given by this angular brackets book, the closing tag is given

by the angular brackets book with an additional forward slash here.

Now what are the a further structures that are available inside the tag book inside the tag

book there could be several other tags ISBN number is one tag, title of the book is

another tag, author is another tag, publisher is another tag, the price of the book is

another tag and the year in which the book was published is another tag. Of course, this

is not exhaustive you could have additional details describing the book like for example,

you could say whether it is which edition first edition, second edition, whether it is a

paperback and so on.

And if you notice each of these sub tags have an opening tag and a closing tag and the

syntax is fairly clear right. So, opening tag looks like this within angular brackets. After

the text that comes inside the opening tag there is a corresponding closing tag which is

the same as opening tags tag has angular brackets in addition has a forward slash. So, it

says each book tag has ISBN number, title, author, publisher, price and year. So, this

describes one book the book with this number title art of software testing author Glen

Myers, publishers Wiley, price is 50 dollar, let us say year of publication is 1979.

Now there could be one more book tag which again gives the same details for another

book that books ISBN number is this the title of the book is called software testing

techniques, author is Boris Biezer, publisher is Van Nostrand Reinhold, price is so much,

year is 1990 and so on. So, and what is the top part top part is some kind of a header

information it tells you which is the version and the encoding of XML that you are using

and this is a comment which tells you the this is a sample XML file meant to describe

books and this is the place where I kept the schema from in this schema books dot x s d,

which I have kept here I can describe the following which I have not given you the

schema.

(Refer Slide Time: 12:47)

Please note that we have not described the schema, but I will tell you in English what the

schema will describe in structured language of XML.

So, it says the schema will say the following it says this which begins here XML

message can contain any number of book tags which are these there is one book tag here,

two book tags that I have shown. Each book tag contains 6 pieces of information title

author and publisher their strings, price is a decimal numeric has two digits after the

decimal point lowest value is 0, there will be a schema to describe this within XML I

have not given you the schema.

Please remember that I have just described it in English ISBN is a number that has up to

ten numeric characters year is an year with 4 digit and once I have the schema the

schema looks exactly like my grammar - it has terminals it has non terminals, it has rules

that tell you how strings of normal, non terminals and terminals can be derived and so I

can use the same criteria that I told you for grammars when we did that module to be

able to derive XML messages for test inputs in this case the test input will be a specific

book or a specific set of books.

And I use the grammar to be able to derive those books the grammar is obtained directly

from the schema description of the XML message.

(Refer Slide Time: 14:10)

Now, moving on when I consider mutation for input space grammars like XML or any

other grammars while testing a program what is the tester in addition to normal inputs

the tester is this also useful if the tester provides malformed or invalid inputs. Why are

invalid inputs necessary? Invalid inputs are necessary because it helps to check if the

program does fault handling correctly invalid inputs also imply a lot about the core

functionality of the program on correct inputs.

If the program works correctly on invalid inputs also then this definitely wrong,

something wrong with the functionality of a program. Typically in areas like security

testing, testing for embedded systems they insist that you do tests with invalid inputs at

every level specifically at system level and they have known to reveal a lot of

vulnerabilities in the system. Just as we saw that standard mutation operators for input

grammars can be used to generate valid inputs, mutation for input grammars can also be

used to generate invalid inputs. Once you generate an invalid input you give it to a

software artifact like a program and see how the program behaves on that invalid input.

(Refer Slide Time: 15:28)

Now we will see what are the common ways to create invalid inputs by mutating

grammars, common ways to create valid inputs by mutating grammars we already saw

when we introduced grammars now I will tell you how to create invalid inputs by

mutating grammars. Please note that when we mutate grammars the mutants that we

create are the test cases themselves this was not the case when we mutated programs

when we mutated programs we started with the program if you remember we called that

program a ground string we mutated that program the resulting program that we got was

another program that had to be tested.

We have to separately write test cases to kill the resulting mutant program when we

apply mutation for input space grammars the mutated string is directly the test case right.

So, there is no notion of killing ground string those things do not exist and the test case

could be valid input, the test case could be an invalid input and that as is acts like a test

case.

(Refer Slide Time: 16:33)

So, here are some standard operations to mutate grammar, what does grammar have? If

you remember grammar has non terminals, terminals, production rules and a designated

non terminal called the start symbol. So, the mutation operators that we will see will

basically work around these entities of a grammar.

So, the first mutation operator that we will see is what is called non terminal replacement

what does it do, every non terminal symbol in a production rule in a grammar is replaced

by other non terminal symbols. This is a very generic mutation operator, remember

typically large grammars for inputs typically XML grammars will have several different

non terminals, so this is you can pick up any non terminal replace it with any arbitrary

non terminal. So, it is like having probably dozens or even hundreds of rules just of this

kind. As always while doing mutation you have to pick which are the non terminals that I

want to replace to create the invalid inputs that I want to test the program for.

And pick only those do not randomly apply non terminal replacement for replacing every

non terminal it does not make sense. For example, if you remember this grammar I will

go back to that slide and show you the grammar for a minute, this was the grammar that

we had which basically gave a sequence of input strings that either could debit an

amount or deposit an amount from a particular account. So, for that grammar if we had

one of these rules which says a deposit is a string called deposit with the key word and it

deposits an amount into the account this which are the non terminals.

Here the non terminals could be amount or account deposit within quotes is like a

terminal string it is meant to be fixed its meant to indicate a keyword called deposit. So,

the non terminals are amount an account. So, if I consider this mutation operator I can

replace amount with account, amount with something else and so on that is what the first

mutation I have done. The first mutation I have taken this production rule replaced this

non terminal account with another occurrence of non terminal amount. So, instead of

giving depositing an amount to an account you just give this invalid input which deposits

an amount into an amount. So, we will see how the program that handles these input

transactions will manage this input, ideally it should have some exception handling to

manage this another mutation.

That I could create would be to replace an amount with a single digit number, this would

be a valid mutation it will not produce an invalid string maybe it will be useful for testing

what the program does on this particular valid input. So, these are just examples again

non terminal replacement says that when you have a production rule in a grammar you

could pick any non terminal and replace it with any non other non terminal both to

produce valid inputs and invalid inputs. In this example we took this it had two non

terminals account and amount. First mutation that I created I replaced the non terminal

account with amount, second mutation that I created I replaced this non terminal amount

with the other non terminal that I had in the grammar which was digit. This resulted in an

invalid mutant, this resulted in a valid mutant.

(Refer Slide Time: 19:44)

The next rule for mutating grammars would be instead of replacing non terminals you do

terminal replacement which means every terminal symbol in a production is replaced by

other terminal symbols. Again this is a very generic rule can create several different

mutants some of them completely junk inappropriate it is up to us as testers to pick and

choose the one that we want wisely. For example, suppose I had this rule which was also

a part of the grammar amount equal to dollar and zero, one or more digit followed by a

decimal point followed by exactly two digits which basically gave the amount that could

be deposited or debited with reference to an account that can be mutated by replacing

this dollar with a dot that will create an invalid mutant we will see what the program

does.

Second kind of mutation replaces this dot with a dollar we will see what happens because

the ones within codes that terminals and I am considering terminal symbol replacement.

So, I cannot replace digit, so I replace only the terminals. The third mutation what is it

do? It replaces the dot with a one. So, all these three mutations which replace one

terminal symbol with some other terminal symbol create what are called invalid mutants

which could be used to test how the program that does deals with these bank transaction

handles these invalid mutants. So, if I apply the first mutant I will get a test case that

looks like this, the program should figure out that this is junk input to handle it, similarly

if I apply the second mutant I get a test case which looks like this which is also junk

input program should handle it, third one is not a junk input it says you deposit a fairly

large amount into an account, if you have it why not the person is lucky.

(Refer Slide Time: 21:31)

So, the third kind of production rules is you delete the terminals and the non terminals

every terminal and every non terminal in a production is deleted, of course if you delete

the whole thing you left no grammar left. So, you pick and choose a subset that you

would want to delete and see when the restricted grammar is applied it will generate;

obviously, lesser input strings what happens to that. For example, there was this

production rule the that we had in the grammar for bank transactions this can be mutated

to create the following I just delete the terminal deposit from that rule that is the first

mutant that I get. Second mutant I delete the account from the rule, so I just get deposit

amount. Third mutant I delete the amount from the rule, so I get deposit account.

All three of them will produce junk or invalid or malformed test cases, we have to figure

out what the program does if the program does not handle exceptions on these test cases

we have to build in those exception handlers.

(Refer Slide Time: 22:27)

The next kind of production rule is instead of deleting them you duplicate terminals and

non terminals. Duplicate means what you create another copy of one terminal or one non

terminal. Again please remember always in mutation testing only one mutation at a time.

So, do not duplicate two terminal symbols or in this in this case, do not delete two non

terminal symbols or terminal symbols only one operator at a time. So, because I

duplicate the term for duplication in computer science theories called stuttering.

So, the duplication operator is also called a starter operator for example, if I consider the

same thing deposit which is deposit and into an account and amount it can be mutated by

replicating the word deposit twice, by replicating the non terminal account twice by

replicating, the non terminal amount twice. All the three cases except for maybe the no

sorry not the last one the first two cases it will create invalid test cases because if the

program cannot handle two word deposits two keyword deposits. Second case the

program cannot handle two account numbers. In the third case the program may or may

not handle the amount based on whether there is a space or not if you include this space

in the program we will consider it as an invalid input. All the three cases you all get

invalid input except maybe for the third case where sometimes you all get valid input and

this will again test if the program is handling invalid inputs correctly it should not do

anything it should raise an exception and stop.

(Refer Slide Time: 23:56)

So, now all these rules that we saw four rules which is terminal replacement, non

terminal replacement, terminal and non terminal duplication, terminal and non terminal

deletion they can be applied for XML example that we saw again. For the sake of

succinct I have not really worked out an XML example. Feel free to ping me in the

forum if you have any doubt and I will be able to explain it to you.

When specifically for XML people usually design mutation operators that check for

constraints like in the earlier thing we saw right that ISBN must be a 10 digits numeric

string. So, they will make ISBN 0 empty string and see how the program handles it and

so on. So, they are designed to work around the constraining artifacts to create invalid

inputs with reference to the constraints.

(Refer Slide Time: 24:44)

So, here is a summary of mutation testing this will be the end of mutation testing that we

will see. Mutation or syntax based testing is a very powerful testing technique as I told

you, it is assumed several other coverage criteria as we saw in one lecture module. They

are based on the underlying grammar of the software artifact for every programming

languages grammar is available for inputs whenever grammar is not available it is a

worth exercise to derive the grammars for these inputs.

Mutation when applied to programs result in mutated programs they have to be killed by

designing test cases. We saw two notions of killing strong and weak killing whereas,

mutation when applied to inputs directly resultant test cases, so there is no notion of

ground strings or killing mutated programs. And specifically if you are interested in

doing mutation for java I recommend that you check out this tool that is available as a

part of a project from George Mason and a university in china, it is a pretty good tool to

do mutation for java program.

I also know of a couple of other tools for mutation for XML and for old Fortran

programs which is a very good tool called Motra, but feel free to Google for mutation

tools for other kinds of languages. So, in the next lecture I will give you a summary of

what we have done till now.

Thank you.

