
Software testing
Prof. Meenakshi D’Souza

Department of Computer Science and Engineering
International Institute of Information Technology, Bangalore

Lecture - 42
Mutation Testing

Hello there, we are in week 9. Last lecture I did mutation testing for integration

specifically focusing on design integration.

(Refer Slide Time: 00:21)

So, this is what is the status of our lectures, we are inside mutation testing the ones

marked in green are done, the one striked out we are not going to do, this we will be

doing in the next two lectures. We are currently here, we are currently here in applying

mutation testing for testing program with focus on integration.

(Refer Slide Time: 00:42)

In the first part of this which I taught in the last lecture I introduced you to generic

mutation operators which talked about changing a calling method in more than one ways,

change a call method and more than one ways.

 (Refer Slide Time: 00:49)

We discussed these five different generic mutation operators that could be done for

integration testing for almost every programming language that supports procedure calls

or method calls.

(Refer Slide Time: 00:56)

Later on in the last lecture after doing this what I told you was we said we will focus on

object oriented integration testing because object oriented languages have picked up lot

of web applications, enterprise applications, are written in object oriented programming

languages.

(Refer Slide Time: 01:11)

So, we said will focus specifically on mutation operators that are available for object

oriented programming languages especially java. So, with that towards recapping what

we need to understand mutation, we recap the essential object oriented features in the

end of last lecture. So, I helped you to recap encapsulation, class inheritance, overriding

methods, variable hiding, constructors, polymorphism and overloading.

(Refer Slide Time: 01:59)

So, we did this last time. So, I will skip through these slides will directly move into

looking at java and what are the specific mutation operators that are available for

focusing and doing integration testing for a language like java. So, to do that one last

concept that I would like to specifically recap related to java is the notion of instance

variables and class variables. So, instance and class variables both are variables that are

associated with the class and java.

What is the difference, we will see the difference class variables are also called static

variables they are declared using the word static. They are static in the sense that there is

only one copy of the variable that is shared with all the instances of the class. Instance

variables on the other hand they belong to an object or an instance of a class and every

instance of the class has its own copy of the variable, changes made to an instant where

instance variable do not reflect suppose you have one copy of instance variable in one

object to make a change it does not reflect on all the other copies of instance variable.

Like we had access levels for encapsulation instant variables where are they declared

they are declared a class level, class variables are declared with a keyword static as I told

you and in addition to these two we also have local variables which are declared within

methods in a class.

(Refer Slide Time: 03:13)

Now what we are going to see we are going to see mutation operators for doing

integrations testing specific to object oriented features without loss of generality you can

assume that we will be focusing on mutation operators for java, but equally well applies

to any other object for oriented programming that shares the same kind of object oriented

features for integrating different pieces of code into one large code. So, the following are

the generic features that we will be seeing. We will instantiate them with reference to

java, but let us say you see C++ and then it has this feature you could write you could as

well use these mutation operators to be able to do integration testing for C++.

So, we will see information hiding related features, we will see inheritance related

mutation operators we will see mutation operator is related to polymorphism, dynamic

binding, method overloading and classes. So, in the slides that follow I will be listing

about 20 different mutation operators, all of them are meant for testing integration of

object oriented programs.

(Refer Slide Time: 04:21)

So, for each of these operators I will tell you what it does and then wherever applicable I

will also give you one instance of what is the kind of error that it could be useful to

detect while doing design integration. Obviously, when you test your program for design

integration you are not going to be able to use all of these operators, this is meant to be

used as an exhaustive list. What we are going to use is a select set as and when we need

based on what our focus for integration testing is.

So, the first operator that I am going to tell you is called access modifier change

abbreviated as AMC do not worry too much about remembering these abbreviations I

just carry them forward because it is useful to illustrate them as you are going on. We

really do not need to remember them for any reason at all. What is this operator do this

operator basically changes the access levels how what are the access levels that it

changes it changes the access levels for each instance variable and method.

What do we achieve by this? We achieve and get tests that ensure that accessibility is

correctly done during integration. The access modifier change operator creates mutants

that can be killed only if the new access level denies access to other classes or it is the

opposite it allows access to other classes which causes some kind of conflict in a that is

when you can observe a change in the behaviour and then you say applying this mutation

operator killed the mutant.

(Refer Slide Time: 05:50)

So, the next mutation operator in fact, all the mutation operators that we will be seeing

will only do three kinds or four kinds of changes they will delete something, they will

remove something, they will insert something, they will modify something.

So, the first one that we saw was a modification, the next one that we are going to see is

deletion. What is this delete? This deletes what are called overriding or hiding variables

the operators called hiding variable deletion by resist reading the name you should be

able to figure out what it is supposed to do it cannot be too difficult. What is this

mutation operator do? By hiding or I mean by deleting the overriding or hiding variable

we cause references to that variable to access the variable defined in a parent or in any

ancestor this could be a common programming mistake that can be caught during

integration testing.

The next mutation operator that I am going to tell you specific to java is an insert

mutation operator.

(Refer Slide Time: 06:41)

In the previous one we showed you about deleting hiding or overriding variables, here

what we are going to do is we add a new declaration what are we going to do, what are

the declaration do that declaration has got to do with hiding variables. So, declaration is

added to hide the declaration of each variable declared in an ancestor. What does this

mutant do? This mutant basically hides the variables that are declared in the ancestor and

it tests whether the overriding reference variable, variable reference is correct or not. So,

these mutants can be killed by test cases that show that the reference to the overriding

variable is not correct.

(Refer Slide Time: 07:24)

So, the next mutation operator in our long list of mutation operators that we are going to

see what does it do, it is a deletion mutation operator instead of working with variables it

works with methods. It is called overriding method deletion abbreviated as OMD, what

does it do? It removes the entire declaration of the overriding method. Please note we are

not removing the method we are removing the declaration of the method.

What will then happen? The references to this method that happen in a class will then use

the parents version right. So, if this happens then it ensures that the method invocation is

indeed to the correct method and not to the wrong one, by deleting if there is a problem

you will be able to find out because the method itself is deleted. So, if there was a correct

reference there will be an issue you will be able to kill the mutant and observe an error,

but if there was an incorrect method by deleting this method reference deleting the

method declaration you will not be able to observe a change so; that means, you will not

be able to kill a mutant the fact that you cannot kill a mutant reveals an error in this case.

(Refer Slide Time: 08:29)

The next operators called overriding method moving abbreviated as OMM. What is it

do? Each call to an overridden method is moved to the first and to the last statements of

the method.

And wherever it is in the program it is moved up by one statement its move down by one

statement. The previous one we deleted the declaration of the method here were not

deleting it instead there is a particular line in which the method is declared, what we do

in the declaration of the call we move its location within the program source code, we

move it to the first statement, we move it to be the last statement, we move it one

statement up we move it one statement down.

What will this test? This will test the following, typically overriding methods in child

classes they often call the original method in the parent class for some reason. For

example they could call it to modify a variable that is private to the parent there could be

other reasons also. One common mistake is to make the call to the parents version at the

wrong time you called too early maybe by the time you called it was too late to use the

variable. So, moving around the call the statement of the call we will be able to correctly

detect whether it was caught at the right time. So, killing such a mutant will detect errors

related to where the call is made, if it is made at an inappropriate place it will be;

obviously, detected. So, the next operator also deals with overridden methods. So, I will

go back we deleted overriding methods we moved overriding methods.

(Refer Slide Time: 10:09)

Now, we are going to rename overriding methods overridden method rename abbreviated

as OMR. What does this do? It renames the parents versions of the methods that are

overridden in a subclass so that overriding does not affect the parents method. What is

this operator designed to check for? This mutation operator basically checks if an

overridden method actually causes problems with other methods. So, here is an

illustrative example let us say there are two classes called list and stack, list is the parent

class list has a child class called stack. Maybe list is a list operations and stack is one of

the ways of implementing a list whatever it is. So, there are two classes list parent class

and its child class called stack.

And there are two methods, a method called m a method called f both of them are

present in the class list and in the class list method m calls the method f. In addition

method m and f are also present in the class stack. How are they present in the class

stack? m is inherited without a change in the class stack, but f is overridden in the class

stack. So, now, when I rename one of them what will happen - when m is called on an

object of let us say type stack it calls the stacks version of f instead of the lists version

this kind of problems I can detect by using this mutation operator, I hope this is clear.

(Refer Slide Time: 11:40)

Moving on the next mutation operator we are going to see relates to this key word called

super. If you remember we used super why did we use it we used it to refer to

appropriate variables in an ancestor right, in an ancestor class that is the context in which

I had introduced this when I told you about object oriented features in the last lecture.

So, super keyword deletion what does it do? It just simply deletes the super keyword

which means what after deletion the reference will be to the local version of the variable

instead of the ancestor’s version. So, without, so let us say if you had super dot x you

delete the word super and directly refer to x. So, the x that I am referring to now is in the

local version and not in the ancestor’s version.

So, what kind of errors can this reveal? This can reveal errors that ensure that hiding or

hidden variables or overriding or overridden methods of variables are used appropriately.

So, if it was meant to be actually from the ancestors class not the local version then

deleting it will use the local version and reveal a potential error.

(Refer Slide Time: 12:48)

So, the next one next mutation operator is called parent constructor deletion. So, it deals

with constructor. So, each call to the super constructor is deleted as the mutation operator

describes what happens in this case? In this case after deletion the parents or the

ancestors default constructor would be used.

Now to kill such mutants which delete the super constructor operator, what do we need

to do? We need to find a test case for which the parents default constructor creates an

initial state that is incorrect because that is when I will be able to observe an error about

using the parents or an ancestors constructor otherwise I will not be able to observe any

error.

(Refer Slide Time: 13:31)

So, the next mutation operator changes types, whose type that is changed it changes the

actual type of a new object, where does it change? It uses this new statement that is

available in java to be able to change the type of the new object.

What kind of problem this causes? This, if you do this then it will cause the object

reference to refer to an object of type that is different from the original actual type

recycler because I have changed it now in the new statement. So, now what will happen,

the new actual type that it is acquiring must be the same in the same type family of the

original actual type, I need to ensure this because you remember the good old thing about

mutation after mutating a program the program must compile it should not be

syntactically illegal. So, type change if you do then the type change better be consistent,

so that the mutation can be applied through a ground string to get a new program that can

still combine and then we can worry about whether we can strongly kill it or weakly kill

it and so on.

(Refer Slide Time: 14:31)

So, the next operator in our long list is what is called declared or parameter type change.

This one slide actually contains two mutation operators both the mutation operators are

about changing a type one changes the type of a declared type one changes the type of a

parameter. So, the declared type of each new object or each parameter object type is

changed in the declaration. So, what will happen, the new declared type must be an

ancestor of the original type and the instantiation will still be valid because that is how

we do it.

To kill such mutants for the where the declared type of a object or the parameter is

changed. What should a test case do? It must cause the behaviour of an object to be

incorrect with reference to the new change that I have made to the type. So, if that

happens then I know that there is a problem with my original declaration or maybe my

original declaration was fine. So, that is the integration feature that I tests.

(Refer Slide Time: 15:28)

So, the next one that we are going to see is also a type change, but this is a type change

called reference type change, what does this do? Here the reference is changed which

means the right side objects of assignment statements are changed to refer to objects of a

compatible type, they reference right hand side of the assignment statement or the

reference statement. The type of that is changed not the entire reference, but only its

type.

For example, if an integer is assigned to a reference of type object then you could make a

type change and change it to that of a string. In general it may not be allowed integer

changing to string there will be big problems related to compiling, but here it will work

fine because both have descended from object, so both can be assigned interchangeably.

And this will again detect any errors that relates to changing of types and the types of

references.

Moving on the next operator that we are going to deal with is related to overloading

methods in fact, we will work with overloading method change here, overloading

method deletion here two operators.

(Refer Slide Time: 16:24)

So, what is overloading method change do for each pair of methods that have the same

name the bodies are interchanged which means the code that corresponds to these

methods the line entire code that corresponds to these methods they are swapped they are

interchanged. Then what is this will test, what sort of error this will test this will test any

error that relates to overloading methods being invoked properly, if they are not invoked

correctly at the same time then one is invoked instead of the other you will be able to kill

the mutant and detect any errors related to proper invocation of overloaded methods.

(Refer Slide Time: 17:14)

So, next operator also deals with overloading methods, instead of changing them it

deletes them. So, the operators called overloading method deletion abbreviated as OMD.

What is this one do? Each overloaded method declaration is deleted. Please remember

there is no point suppose I have more than one overloaded methods in one short I cannot

apply this mutation operator and delete more than one that will violate the problem of

applying one mutation operator at a time to be able to mutate a ground string. This

mutation operator can be applied to delete any overloaded method declaration but not

more than one that, if you apply it to more than one deletion then it will mean that you

are deleting more than one at a time that is not allowed. So, you delete each overloaded

method declaration one at a time.

Choose which one to delete based on what you want to focus in test. What will this

operator ensure? This operator will ensure coverage of overloaded methods why because

I delete then what will happen without it then I test that then I put this one that I deleted

back and delete something else then I test what happens without what second one that I

deleted right. So, all the methods must be invoked once as and when they take turns to

get deleted.

If a mutant still works correctly without the deleted method then it could be an error, it

could be an error in invoking one of the overloading methods while doing integration the

incorrect method may be invoked or an incorrect parameter type conversion has

happened. If nothing happens after deleting one particular method then maybe it was a

piece of dead code and you could do without it right. So, if you get an equivalent mutant

then it means that the method was dead code and you could do without it otherwise you

will definitely be able to kill the mutant and observe one of these kind of errors.

(Refer Slide Time: 19:08)

So, the next operator we will see change is the order in which arguments are passed

during method invocation. It is called argument order change abbreviated as AOC, what

does this do? The order of the arguments in a method invocation is changed to be the

same as that of another overloading method if it exists. This causes a different method to

be called because I am changing the arguments and hence it checks for common fault in

the use of overloading. What happens? Because something could be called out of order I

have changed completely, so then if there is an error because of the use of overloading I

will be able to catch it.

So, the next mutation operator also deals with arguments.

(Refer Slide Time: 19:45)

But here we did change the order of arguments here we change the number of arguments

there is you had three you could make that two you could make that four that is what we

mean change the number of arguments.

So, number of arguments in method invocations is change to be the same as that of

another overloading method provided there is one such method that exists and you could

replace it with that. What will this help? This will help to check that the programmer

indeed invoked the correct method he did not pick up the wrong method to invoke and

when new values have to be added they are constant default values of primitive types or

they are the result of default of constructors for object, is that clear.

(Refer Slide Time: 20:31)

So, moving on the next operator that we are going to see we still have a long way to go

remember I told you 20 operators. So, were probably around 15. So, we still have a good

number of operators to go.

So, the next operator that we are going to see deletes this keyword called this, you

remember java has this keyword called this. What is the keyword this do? Within a

method body when I use a keyword this it refers to the current object of the member

variable is hidden by a local variable or a method parameter that has the same name.

Now if I delete it then what will happen it checks basically when I apply this mutation

the resulting program if I am able to kill it then I am basically checking if the member

variables are used correctly by replacing every occurrence of this dot x with x. So, here

unlike the earlier one when I say this keyword deletion you have to be careful you have

to delete more than one keyword of this because if you keep one and retain one they

could be problems. So, sometimes you might have to delete one of this one, but if there

is more than one related one you have to delete all of them.

(Refer Slide Time: 21:38)

Then the next mutation operator is called static modifier change abbreviated as SMC,

what happens here? Remember static variables I told you right in the beginning instance

variables and class variables of java class variables are static variables. So, each instance

of a static modifier is removed and the static modifier is instead added to the instance

variables. What will happen this basically checks if the various instance variables and

class variables that have been declared around a piece of code are declared correctly and

are being used at the appropriate piece.

(Refer Slide Time: 22:13)

So, the next one variable initialization deletion VID, what does it do? It removes

initializations of each member variable of a method or class, they are not initialized at all

if they are not initialized what are the kind of errors that you could detect. Please

remember instance variables can be initialized in the variable declaration or in the

constructors for the class.

So, when I remove variables this operator removes the initialization so that member

variables are initialized to default values and it basically checks if the program will still

run fine with reference to the initializations at the default values.

(Refer Slide Time: 22:49)

So, the next the last one in our really long list of mutation operators what does it do, it is

called a default constructor deletion DCD - it deletes each declaration of the default

constructor with no parameters. What can this ensure? This ensures that the user defined

default constructors are implemented properly. Suppose I delete and the delete after

deletion the program still works fine which means it is an equal and mutant then clearly I

may not need it right there is something wrong with my implementation. Suppose I

delete an after deletion my program thus have a problem then I have implemented it

correctly at least at the integration level.

(Refer Slide Time: 23:30)

So, what did we do? We provided an exhaustive list it must be tiring it must be a little

confusing in fact, to go through such a big list you might want to play this video once

again to get the list right. But intuitively what it tells you the list that we provided of

twenty different mutation operators it basically focuses on entity is related to integrating

methods, classes inheriting from each other, overloading, overriding, their access levels

and it makes changes to all the places that focus on putting these together and tells you

an exhaustive way of mutating to test this integration.

Obviously, when you have a piece of code that you want to test for design integration,

you are not going to be able to consider all of these operators not even half of them.

Carefully based on the integration feature that you want to test you will pick up one or

two of these operators maybe a few more and apply them to see the feature that you are

going to test. So, the choice of the operator is based on the feature that you want to test

and that is completely to be decided by you.

The focus of this lecture was to be able to provide an exhaustive listing to help you

choose from this varied variety of choices that are available. So, I hope this exhaustive

listing of mutation operators for object oriented integration testing helps you. You could

use it when you are integrating java programs or C++ programs where all these features

are available.

In the next lecture we will move on to using mutation testing for specifications, input

grammars and XML models of inputs.

Thank you.

