
Software testing
Prof. Meenakshi D’Souza

Department of Computer Science and Engineering
International Institute of Information Technology, Bangalore

Lecture – 41
Mutation Testing

Welcome to week 9, we continue with mutation testing this week this will be the first

uploaded lecture for week 9 now. What are we going to do today we will begin by

recapping what we have planned to do for mutation testing. If you remember I have

showed you this figure last week in one of my lectures I say this is an overview of what

we are going to do for mutation testing.

(Refer Slide Time: 00:21)

Two kinds of mutation testing one that directly tests based on the BNF grammar, one that

applies the mutation operator and tests that could be applied for programs that unit level

for integration testing, for specifications and to mutate the input spaces and in programs

you could apply it for any programming language, you could apply to test compilers and

you could mutate program and test this is what we had looked last week, this no known

application of BNF grammar based testing for integration testing, but you can apply

mutation operators to program to do integration testing, when it comes to specifications

there are specific classes at specifications called algebraic specifications for which

mutation testing can be used, you can also apply to finite state machines, you can apply it

to model checking tools like s m v and new s m v.

In input space partitioning the main goal of mutation testing is to apply it to input

description languages we will see it for XML. So, this was an overview of all that we

were going to do regard to mutation testing for software artifacts. What have we done

already; the things that are colored in green here we have completed BNF grammar for

programming languages, I told you how to mutate by using the grammar we also saw

mutation operators for programs strongly killing weekly killing mutants, ground strings

and we saw an exhaustive list of mutation operators that you could apply for programs

written in java and c to mutate your program and do unit testing for that program. So,

these we have already completed, the things that I have striked out things that as I told

you we are not going to cover as a part of this course. So, esteem of compilers is a very

involved topic that based that is based on grammar testing is not within the scope of this

course. So, I am not going to do that.

Algebraic specification needs me to introduce the detail notion of algebraic

specifications, and it does not have great practical applications. So, I decided to skip that

also, and write in the beginning I told you this course does not cover model checking. So,

we will not really do mutation operators for model checking. So, the pending ones are

the ones that are in black to be done. What we are going to do in this lecture and into a

good amount in the next lecture would be, how mutation testing is applied to programs to

be able to do design integration testing this is what I am going to tell you. So, this is the

focus of the next couple of lectures including this lecture.

(Refer Slide Time: 03:10)

So, when it comes to mutation programs at the level of integration testing, we have

considered two parts of it the first that we ask is how to use mutation for testing at

integration level without focusing on object orientated relationships. Let us say I have a c

program; the c program can be modular it could have several procedure that call each

other, several functions that call each other, and I might want to test the interfaces for the

procedure calls related to c. There will be no object oriented features at all we will do

that separately that is such that it applies to any procedures methods called interfaces and

could be used generically cutting across several different programming languages, then

we will consider specifically integration related to object oriented features, because that

is very important than lot of new complications come when it comes to integrating

modules from different classes modules from different methods.

So, we will look at a separate set of mutation operators that focus on object oriented

integration testing. So, I will begin this lecture in this lecture we will do the first part I

will tell you what are the inter mutation operators for mutation testing, at integration

level for generic programming language, you could use it for generic programming

language like c, you could also use it for a programming language like java, but without

focusing on the object oriented relationships or any other programming language.

(Refer Slide Time: 04:35)

So, integration mutation; integration testing or integration mutation is also called

interface testing. If you remember in the module that I told you about design integration

when I do inter integration testing the focus is on interfaces also called interface testing,

how does it work? It works by creating mutants where does it create mutants it creates

mutants on the interfaces or on the connections between the components, it does not

mutates it within a method that we already saw last week.

The mutation that we want to focus on this week will focus on mutation on the calls are

interfaces that are present between the functions and procedures and methods. Most of

the mutations that we will do are around method calls or function calls, both the calling

method and the called method are considered for mutations.

(Refer Slide Time: 05:24)

So, generically listing these are what the integration mutation operators do. They first

this is the first to talk about the calling method, the last to talk about the called method.

The first one says if they change a calling method by modifying the values that are sent

to the called method. So you could change variable names you could change expressions

that are sent to the call method. The second mutation that again focuses on the calling

methods, it is that is modifies the call itself will see examples of how to do this. The

other two kinds of mutation focuses on the method that is being called, called method it

changes the called method by modifying the values that enter and leave the matter what

does the called method return what is out what is it enter what does it leaves it.

So, typically it includes parameters and variables from highest scope also, for object

oriented programming including variable set come from a class level, from package level

public variables and so on. Of course, if you are in c it does not make sense, but if you

are working with object oriented programs then you need to worry about this also. The

last kind of mutation will change the call method by modifying statements that return

from the method. So, here it modifies the values that enter and return from the method, it

here it modifies the statement itself that return the method. Only the return statements we

do not focus on modifying the internal statements, when we do unit testing we would

have test that method separately by modifying the internal statements we dont have to

consider that.

(Refer Slide Time: 06:54)

So, here are five generic interface mutation operators that we will be discussing. As I told

you can apply it to any programming language that is modular across within without it

being object oriented it applies to any programming languages. So, we will see them one

at a time the first one we will see is called integration parameter variable replacement, do

not worry too much about these abbreviations I have given them because the book has

them and sometimes it useful as a matter of convene, but you do not have to remember

the abbreviation and they are by no means important for us. So, if you see every operator

begins by with the word integration. So, it says what do I do in integration. I replace a

parameter variable that is the first mutation, the second one says in integration this thing

I reply I insert a new unary operator if you call a method with x comma y may be instead

of calling a method x comma y, as arguments you will call it with minor x comma y that

would be a unary operator insertion mutation.

The third one says I change the parameters that are called then doing the interface or

integration. The fourth one says I delete the method call itself see what happens is a

natural thing to do right, now maybe it is a redundant call. So, its nutrition could delete

the entire method call itself that last mutation says I modify the return expression

returned by the (Refer Time: 08:18) method.

(Refer Slide Time: 08:23)

So, we will go ahead and define one at a time, the first one integration mutation operator

I V P R expends as integration parameter variable replacement. So, what is it say if you

read it out it says there is a parameter which are the parameters with which the method is

being called by the column method this nutrition says he take each parameter in the

method call and replace it with each other variable of compatible time. So, let us say that

is a call to a method called g with two parameters a and b, maybe you replace it with d

and d such that type of c matches with the type of a the type of b matches with the type

of d. Why does type matching important it is important. The type should be compatible

or matching remember it is important because the mutated program should be able to

compile execute and run for the notion of killing.

So, I cannot replace it with any other variable, I replace the parameters with other

variables that are of this same type of compatible type that are also present in the

program in object oriented languages when we apply integration parameter variable

replacement, we also have to consider replacing primitive type variables and objects. So,

in summary what is this mutation operator says, it says that the caller is calling a calling

procedure with some variables, those variables are called parameters go ahead and

change these parameters to any other variable of a compatible type that is all it says.

(Refer Slide Time: 09:51)

The next mutation operator called as integration unary operator insertion, what is it do? It

says there is a method call there is an expression in the method call you modify the

expression by inserting all possible unary operators in front and in behind.

So, as I told you suppose there was a call to a method at some point called let us say call

to a method f, which had the three parameters as a b and c, you could insert a unary

operator in front of a to mutate it to make it minus a. So, instead of the method being

called with parameters a b and c, it will be called with parameters minus a b and c, in

turn you could mutate and change the sign of b, you could mutate the change and change

the sign of c and so on. So, unary operators that are available in vary by language and by

type. So, whichever language you are using basically whatever is compatible in that

language, feel free to pick up that unary operator and change the parameters by inserting

a new unary operator in front of a reference variable or a parameter.

(Refer Slide Time: 10:53)

The next operation third operation mutation operation is this, it says integration

parameter exchange. Which means what each parameter in a method call is exchanged

with each parameter of compatible type in that method call. What is it mean it says if the

method call for example, is something like this a comma b, then I exchange the

parameters a and b and instead create a call which says max of b comma A maybe this

will find a bug this is a useful interface mutation operator.

(Refer Slide Time: 11:34)

The next one that we will see is what is called integrator integration method call deletion.

So, what it says as I told you here it is bold it just delete the entire statement that touches

the method of the function call. So, if each call is deleted means what if it is deleted the

mutated program should still compile and produce the value. So, you should be the

method is actually originally called would have returned the value. So, when you delete

the method call there will be no returning of value, and the program execution not

compiling will stop. So, you cannot just delete and hope everything will be fine.

Obviously the program is not going to compile for you to see if there is any error. So,

when you delete you also do the following. If the method returns a value and is used in

an expression the method call is replaced with appropriate constant value. Let us say

there was a method call which was returning an integer value which was used in an

expression at a subsequent point in the program in the main calling program. So, what

you do? You go ahead and replace wherever it was used this method call was used with a

simple assignment of some constant integer value. So, that the main program continues

to compile and execute without any problem. When I specifically apply this method

called deletion in programming language like java I must be careful the default value

should be used for methods that return values of primitive types also. The method returns

an object then the method call should be replaced by a call to the special new method

within the appropriate class otherwise will run into trouble.

(Refer Slide Time: 13:04)

So, the final genetic mutation operator that we will see is what is called integration return

expression modification, what is it say? It says each expression in a return statement in a

method is modified by using any of these operators. If you remember we had seen these

two operators in the last lecture last weeks lectures, when I had explained to you about

method unit level integration operators with same category of operators one after the

other, we had specifically seen this unary operator insertion which inserts the unary

operator similar to the one we saw here in this slide is in such unary operators for

parameters, this could insert unary operator in any expression and then there was

arithmetic operator replacement which let us you replace with the plus with a minus plus

with a star minus with a star, star with a plus and so on. So, you could use any of these

mutation operators and change the expression that was involved in the callee method

returning the value to the called method. As I told you do not make any other changes to

the internals of the callee method; only the return part of the expression is changed

because our focus is only on interfaces.

Just to summarize what I set out by giving our five generic interface mutation operators,

which could be applied for any programming language, the first in computation operator

says you check and change or replace the parameters that are called during the call, you

could change the parameter by inserting a negation or a unary operator you could

exchange the parameters, you could delete the method cal, but replace it with a dummy

stuff so that the main program continuous to run or you could change the return

expression modification by using any of the method level mutation operators. All these 5

mutation operators can be applied to any programming language, when you want to

focus and test interfaces.

(Refer Slide Time: 15:02)

So, towards moving onto using mutation testing specifically for object oriented

languages, first point to be noted as I told you is that for object oriented languages the

kind of integration that happens is very different from imperative languages like c and all

that. So, it helps to spend some time understanding what are the various concepts

underlying object oriented programming language that helps us to integrate software

components that are developed for these languages. So, with that in mind I would like to

recap from the point of view of testing the following object oriented concepts, and before

we move on and do that when it comes to integration testing for object oriented

languages we should remember that there could be two level, one is you have developed

individual methods and you want to put together the methods in the same class and test

how they interact. The other is you have written more code you developed a lot of code

for several different classes and you want to put together the code of these classes, and

test the interactions between the methods that come from different classes. Whatever it is

the concept that we will be recollecting today, will help us to do both these kinds of

integration test.

So, what are the features that he will recap please note that this not meant to be an

exhausted introduction to these features, we are only going to give a brief overview of

the listed features here from the point of view of our use in texting. So, will use it from

here for mutation testing, and later when I do exclusive modules and object oriented

testing we will revisit some of these features. So, I will tell you what encapsulation is

class inheritance, method overloading method overriding, hiding of variables class

constructor and the notion of polymorphism.

(Refer Slide Time: 16:56)

So, the first one in our list is encapsulation, what is encapsulation? Remember the centre

of object oriented languages is to do abstraction encapsulation is one of the extraction

mechanisms, that several object oriented languages offer. Encapsulation and abstraction

that enforces information hiding; the word encapsulate says you close something you

hide something it frees the clients of an abstraction from unnecessary dependence on

Some design decisions that you do not want to happen at that level of abstraction.

sometimes at an abstract level you want to not know what certain decisions, and a

refined level of the abstraction you want to know about his design decisions

encapsulation helps you to do that. True encapsulation objects can restrict that access to

member variables and methods by other objects using encapsulation.

Java support four different access levels, other programming languages that support

object oriented features might have other access levels, the four access levels that we will

discuss with reference to java in mind are private protected public and default. Default is

also called package because default is also called package, the default access if not

specified is package.

(Refer Slide Time: 18:13)

So, how do these access levels look like for example, if a particular entity is private let us

say a variable is private, then here are all the access level read capital yes capital Y as yes

n as no small n as no. So, if a particular variable is private then within the same class is

available for access, from different class same package in different package sub class in

different package, in a different class it is not available. If a variable is declared as which

is the default declaration is available within the same class in different class, but within

the same package, but it is not available in a different package in different a subclass

variable which is the default declaration its available within the same class in different

class within the same package, but it is not available in a different package and a

different subclass.

If a variable is protected then its yes for class yes for different class and same package

yes for different package and no for different package non subclass public access is

available through out there is no restriction the variable or entity can be seen everywhere.

So, this is what encapsulation deals with.

(Refer Slide Time: 19:15)

The next concert that we want to look at is what is called class inheritance. What is class

inheritance let us talk about. We say one class inherits from another class then the class

that it inherits from is called a parent class, and the other class is called a subclass or a

child class parent of parent could be an ancestor. So, we see a subclass inherits what are

the things that it can inherit? It can inherit variable it can inherit methods, it can inherit

these two entities variables and entities from its methods parent or it can inherit from its

parent parent which will be an ancestor and moving on parent parent parent which will

be another ancestor and so on. Then after inheriting what can the sub class do with the

variable and methods it can use them as they are defined, it can overwrite the methods

redo them or it can hide the methods we will see overriding and hiding very soon now,

java does not support multiple class inheritance. So, every class has only one immediate

parent. Now the sub classes that inherit can explicitly use their parent variables and

methods without changing or overriding by using the word super. So, the prefix whatever

variable or method name with super like, this super dot method name then you can use it

as it is.

(Refer Slide Time: 20:46)

Javas inheritance allows us to do as I told you here override methods hide the variables

can also use class constructors. So, will look at method overriding first what is method

overriding do method overriding allows a method in a subclass to have the same name,

same arguments and same result time as a method in its parents, but inside the code that

the method implements could be different. So, for all practical purposes it will name is

also same, arguments is also same written type is also same, but whatever it computes or

whatever is core functionality is that could be different. Overriding what is it do it allows

subclasses to redefine inherited methods; child class method can have the same signature

meaning same name arguments and results, but a different implementation that is what I

told you just now.

(Refer Slide Time: 21:27)

Variable hiding: what is that variable hiding is achieved by defining a variable in a child

class that has the same name and the type of an inherited variable. So, which means what

you have a variable from your parent class, you declare another variable with exactly the

same name with exactly the same type. So, it is as good as saying I am not considering

the variable that I have inherited from the parent class or in other words I am hiding the

variable that I have inherited from the parent class.

(Refer Slide Time: 21:58)

What is the class constructor? A class constructor is a class in a class it is a special type

of subroutine that is called to create an object. It prepares the new object for use of an

accepting arguments that the constructor uses to set the required member variables of

that object that is being created. These objects are not inherited the same way methods

are constructors are very specific features; to use a constructor is explicitly call it again

using the super keyword that we saw here using this super keyword.

(Refer Slide Time: 22:41)

The call must be the first statement that derived class constructor and the parameter list

must exactly match the parameters in the argument list of the parent constructor. What is

polymorphism? Java supports two versions of polymorphism attributes and methods both

then use dynamic binding. So, what did you mean by that an object actually in java has a

declared type and actual typee. Actual type can be the declared type or it can be any type

that is descended from the declared type polymorphic attributes and polymorphic

methods as I told you here right 2 types of polymorphism attributes and methods.

(Refer Slide Time: 23:09)

So, what do they do polymorphic attribute is an object reference that can take on various

types that is why the word poly, poly means it can be of several types at any point and

time in a given piece of code.

At any locational program the type of object reference can be different in different

executions of the same program for methods. The method is called polymorphic, if it can

accept parameters of different types, having a parameter that is declared of type object.

What do polymorphic methods used? For polymorphic methods are used to implement

type abstraction please remember that is also something called overriding methods which

is basically another method in a child class that has the same name argument and type

this is different the polymorphic method can accept parameters of different types by

having a parameter that is declared of type object these two are different.

The next concept in our list is overloading, overloading is the use of same name for

different constructors or methods in the same class.

(Refer Slide Time: 24:08)

So, the it again intuitively in the English sense of the term overloading, we use the same

name again and again. So, you over load the name they must have different signatures or

lists of argument unlike overriding. Overloading is different from overriding why

overloading a curse with two methods in the same class whereas, override occurs

between a class and one of its descendants.

 (Refer Slide Time: 24:32)

The next concept is instance in class variables, instance in class variables are associated

with a class, class variables in java called static variables in the sense that there is only

one copy of the variable that is shared with all instances of that class, unlike class

variables that are static, instant variables belong to an object and instance of a class every

instance can have its own copy of the variable that way it is not static. Changes made to a

particular instance of an instance variable do not reflect in other instances of that class.

So, instance variables are typically declared at class levels, class variables are also

declared at class level, but with the keyword static local variables are declared within

methods.

So, this was a brief overview of some object oriented concepts that I wanted to tell you.

So, we recapped all these concepts that are listed in the slide this by no means is meant to

be an exhaustive introduction. So, please do not consider this as an exhaustive

introduction we just briefly recap concepts as we wanted for testing specifically mutation

testing related to object oriented integration. Later when we do object oriented

applications testing also will come and recap these concepts feel free to pick up any good

book on object oriented programming, and you will get a more detailed thorough

introduction to these concepts.

I hope this brief overview was helpful, we will continue with object oriented mutation

testing for integration in the next lecture.

Thank you.

