
Software Testing 

Prof. Meenakshi D’Souza 

Department of Computer Science and Engineering 

International Institute of Information Technology, Bangalore 

 

Lecture – 04 

Software Test Automation: JUnit as an example 

 

Hello everyone. We will do the last module of the first week. In today’s module I would 

like to concentrate on the second step of testing. If you remember in the previous 

modules we saw that there were four steps involved in software testing: your design test 

cases, then you automate test case design- that is you make the test design test case ready 

for execution, followed by the third step which is the test execution process, and finally 

when the test execution results are recorded you evaluate the test right. 

So, the second step in these four processes is that of test case automation. And the focus 

of this lecture is to understand what is test case automation and what exactly goes into it. 

(Refer Slide Time: 00:54) 

 

In the previous module we saw that testability of a software intern translates into 

observability and controllability, and these are measured using the RIPR model; R for 

reachability, I for infection, P for propagation and the final for R for revealing. So, how 

do I ensure that reachability propagation and revealing are done? I ensure that these three 

are done in the step of test case automation which is what we will look at in this module. 

So, how do we do that? We have to give what are called prefix values to ensure 



reachability of a particular piece of code, and then once that test case design exercises 

that piece of code we have to give postfix values to the test case design to ensure that if 

there is an error that gets propagated outside. 

So, all these things are what are called test automation to formally define test automation 

it is the process of controlling the execution of test, and actually ensuring the reachability 

is done by giving prefix values of preconditions. Then you execute the test and compare 

the actual out come to the expected outcome and then you know report the results of 

your test case execution. 

(Refer Slide Time: 02:11) 

 

So, we will recap what a test cases and then see what are the add ones that we have to do 

to a test case to make it ready as an executable test script. If you remember from the first 

lecture what was the test case; test case basically contains test inputs and expected out 

puts. And if the expected outputs match the output after execution then you say that the 

test cases passed otherwise it is failed. This is a raw test case that has been designed. 

Now, to make it into an executable test script the process of test automation has to add 

prefix values and postfix values to this test case. So, what a prefix values? They are 

basically inputs that are necessary to put the software of the software artifact into an 

appropriate state so has to be able to receive the actual test case for execution. And after 

the test case is executed postfix values come into picture. What a postfix values? They 



have values that are necessary so that the results of execution are sent to the software as 

an observable value by an external user. 

Postfix values intern bifurcated into two categories: verification values and exit values. 

What are verification values? Verification values basically tell you that an exception has 

occurred this test case has passed or it has failed and it is a value that clearly tells you 

what is the result of test case execution. And what are exit values? Exit values are 

basically or pieces of code that are needed to make sure that after the test case is 

executive the code appropriately finishes its execution fully and exits to. So, as to retain 

and reveal the error state if there was any present during execution. 

(Refer Slide Time: 04:04) 

 

So, now if you take the raw test case as it was designed and make it ready as a test script 

to be executed what are the summary of things that it has. It has the actual test case 

values the prefix values, the postfix values, and as I told you it also has the expected 

outputs. So, when we put it all together and get it ready a final result at the end of the test 

automation step should be to be able to get an executable test script, which is a test script 

that contains all these values and can be executed directly on the piece of code that it to 

being tested on. 



(Refer Slide Time: 04:45) 

 

So, I will explain in detail how to give prefix values, how to give postfix values, and 

what happens in the process of test automation by using this open source tool; very good 

open source tool called JUnit as an example. Later in the part of the course when we see 

several examples of Java programs or C programs you could use the JUnit framework to 

be able to experiment with the test cases that you have designed as a part of assignments 

or other lectures that we will see in the course. 

This module is not meant to be an exhaustive introduction of JUnit, but it is more meant 

to be used to interpret JUnit as a test automation tool, as a framework to understand how 

test automation works. In that process you will also learn some of the commands of 

JUnit which will be useful when you run your own experiments with JUnits at later 

points in the course. So, what is JUnit? It is an open source testing tool very popularly 

used in the industry you can download it from JUnit or org. And what are the things that 

it supports? It is very good for writing and executing test scripts. 

So, once you design a test case you can automate it using JUnit and you can execute it 

and evaluate the results also using JUnit. It can be used as a standalone entity on Java 

programs or it can be used within an IDE like Eclipse. 



(Refer Slide Time: 06:13) 

 

So, what are the high level features of JUnits? JUnits supports what are called assertions. 

How are assertions used? Assertions are basically statements that will always return true 

or false. You can view as an assertion as if it returns true then everything is fine, the test 

case is passed. If an assertion returns false then there is an error that has been found and 

you can use this assertion to be able to reveal the error to the tester. So, we will 

assertions how to use assertions through examples in JUnit. 

JUnit also has test features for sharing common test data. Let us say two people are 

writing a common piece of code and they want to be able to share the test cases that they 

are writing then you can use JUnit to be able to do that. And JUnit also has suits for 

easily organizing, running, executing and observing tests. And of course, like many other 

tools it has a textual interface and it also has graphical interface. 



(Refer Slide Time: 07:11) 

 

So, what can be JUnit be used for testing? The main thing is JUnit used for testing Java 

programs. So, it can be used as a very good unit testing tool or it can be used as a very 

good integration testing tool. It obviously cannot be used as a system testing tool. In 

system testing if you remember what I had told you we take the inputs put the system is a 

part of the input server, connected to the database and let the outputs be observed as 

commands and so on. 

JUnit being a testing tool for Java cannot be used for system testing, but can very well be 

used for unit testing and integration testing phases. So, it can be used to test an entire 

object, it can be used to choose just one method a certain interacting methods within an 

object it is up to you. So, JUnit has what are called test methods and each test is 

embedded into one test method, then it has a test class that contains one or more test 

methods. Test class apart from this can also have method that I used to setup the software 

to the state before and update the state after each test. So, they are this method can also 

be used to done the prefix and postfix values that I had telling you about. And then there 

are code test methods which actually contain the test cases that have to be executed. 



(Refer Slide Time: 08:34) 

 

So, how do I write tests for JUnit? The first thing that we will understand while writing 

test using JUnit is to be able to use assertions. As I told you a little while ago what is 

assertion used for; assert is like a debug but in the context of testing. So, I say assert 

something if this test case passes, asserts something if this test case fails. Assertion is 

always a Boolean expression. The value inside an assert always evaluate to true or false. 

The implicit understanding while writing assertions is that if it evaluates to true then 

everything is fine your test cases passed so you can move on. But if an assertion 

evaluates to false then it indicates or it might indicate an error state. So, you will 

typically put a print statement their right; say- what is gone wrong and you throw an 

exception or you print an appropriate warning and so on. So each test method that is used 

inside JUnit basically checks for a condition which is nothing but the assertion. And 

reports to the main test runner method about whether the test is passed or failed. 

The test runner method uses the result of this assertion failing of passing to be able to 

report the result to the end user. And here are some examples of how asserts run. So, it is 

present in JUnit or framework or assert. So, you can do something like assert true 

Boolean. So, this just says that if this Boolean predicate inside this asserts true evaluates 

to true then you just quietly say that it is true. If it evaluates to false maybe he will give a 

warning and terminate if it require. 



The second asserts true test two arguments it takes a string and it takes a Boolean 

predicate. The idea here is that if the Boolean predicate evaluates to be true then you do 

not do anything. And if the Boolean predicate evaluates to be false then you print the 

string. So, it can be used as a way of warning the user. 

A third assertion is what is called fail assertion which basically says only if it fails if a 

particular thing fails then you output string as a warning to the user. So, when we see 

examples of code that we write with JUnit I will show you examples of how to use all 

these assertions. 

(Refer Slide Time: 10:58) 

 

So, now how to write a test fixture? Assertion is a code component which tells you when 

a test cases passed or failed. Now we have to write still prefix values, postfix values, how 

do you do that. So, how do I do that? Prefix values are initialized and what is called 

before method; at before method and postfix values are given in a method called at after 

method- the names are very intuitive and very easy to remember. 



(Refer Slide Time: 11:27) 

 

So, I will first walk you through a couple of examples. We will start with the simple code 

for addition as an example, then I will look at an another example which returns the 

minimum element in the list, and tell you how to write prefix values, how to write 

postfix values, how to give the test cases, and how to write assertions that will output the 

result of the test case passing or failing. 

So, we will start with an example of a code that as addition. So, here is an example of a 

code that as does addition there is nothing complicated to it, it takes two integers a and b 

and it returns the sum of a and b which is a plus b. Now suppose you are given the task 

of testing this code. So, let us recap and understand what a test case is. 

So, test case should give inputs and it should give expected outputs. What are inputs to 

this piece of code? Inputs are one value for a and one value for b, and expected output is 

the actual sum of a and b. Now what you have to do is a part of the automation you say- 

that you please take these inputs and compare it to the expected output. If the actual 

output matches the expected output fine, everything is working fine, but if the actual 

output defers from the expected output then you use assertions to be able to flag the fact 

that the test case execution has failed. 



(Refer Slide Time: 12:50) 

 

So, how will you do it in JUnit? This is how you do it in JUnit. So, these has standard 

things that you have to import, every time you will write any program any test method 

using JUnit for test case automation and execution. So, you import what is called JUnit 

or test and you import this library of assertions. So, I am writing something called the 

test for the calc method. How do I do? I write these two statements the first statement 

says that- you assert true and it gives a string, and the second statement actually runs the 

addition code that we saw in this slide with two actual test input 2 and 3. And if 2 and 3 

are the test inputs assuming that addition works correct what is the expected output? The 

expected output should be 5. So, it compares it to 5. 

So, what it says is that you run this add program on inputs 2 and 3 and check if the result 

that is outputted by the add program on these inputs is actually equal to 5. If it is actually 

equal to 5 then you exit test cases passed. But if it is not equal to 5, if the calc program 

actually has an error; in this case it does not have an error because it just a simple 

program that returns a plus b. But assuming that it does have an error you write it for 

some other program, then this assert true will take over and it will output this string. So, 

it will say that calc sum is incorrect. So, it will say that there is a error somewhere in the 

code. 



(Refer Slide Time: 14:22) 

 

So, now we look at another examples slightly longer than that simple toy addition 

example. So, this is an example of a piece of code Java code that written the minimal 

element in a list. So, this code is very well debugged; in the sense that it takes care of all 

exception condition, it takes care of what if the list is empty there is nothing to written, 

what if the list has entities that cannot be compared at all. For example, suppose the list 

has a string and a number, the list has a string and a Boolean value there of different 

types they cannot be compared. 

So, in all these cases this code is meant through several different kinds of exceptions. So, 

these are what are called a part of debugging. Whether developer himself takes care of 

all the corner cases like wrong inputs, wrong data types etcetera which need not be taken 

care of by a tester. So, this code is well written to be able to take care of all the 

exceptional cases. Of course, the tester job would be able to test for all these features 

also as we will see through examples, but we will first see what the code does and what 

are the various exceptions that it takes care of. 

So, this class is called min and as I told you it returns the minimum element in a list and 

it takes as input comparable list of elements. What I said is that all of them should be 

comparable, we should all be a list of numbers or they should be a list of strings that I 

can compare them with respect to the lexicographic ordering they should not be 



incomparable types. And what is the main functionality of this class min? It supposed to 

return the minimum element in the list. 

As I told you this class min is also supposed to take care of exceptions, like wrong 

inputs, incomparable inputs and so on. So, it has several exceptions. The first exception 

that it has is what is called a null pointer exception. It throws the null pointer exception if 

the list is empty or if any of the elements of the list are empty. And the second kind of 

exception that it throw is what is called as ClassClastException which it throws if the list 

elements are not comparable to each other. As I told you one is a string and the other is a 

Boolean constant how do you compare them, so you have to throw an exception. It also 

throws an illegal argument exception if the list that is passed through it is empty, there 

are no elements to compare. 

So, I have split this code across two slides because otherwise it would not be readable. 

So, we will move on and look at the rest of the code in the next slide. 

(Refer Slide Time: 16:54) 

 

So, what is the main code look like? This is how the main code looks like, I just glanced 

through it because I do not want to read the code line by line, is just a standard written in 

Java program that takes a list right called T. And then if the list is empty then it throws 

an illegal argument exception otherwise it repeatedly compares it to the next element in 

the list and returns the result in this value called result; it returns the minimum elements. 

So, this is a piece of Java code. So, just to recap what its main functionalities are it takes 



a list of compare table elements as argument and then returns the minimum element in 

the list. 

Suppose the list does not have comparable elements, the list is empty; the list has other 

kinds of problems this code does exception handling very well. So, now our job is to be 

able to design test cases for this minimum program and see how you can use the second 

step which is the test automation step that is the focus of this lecture to be able to test this 

program. 

(Refer Slide Time: 18:02) 

 

So, how do I do? The first step as I told you is because we want to be able to use the tool 

JUnit we have to import all the standard classes; we have to import JUnit assert, we have 

to import JUnit you have to import the util library. After this the next job is to be able to 

give prefix value and postfix values to the code. 



(Refer Slide Time: 18:25) 

 

How is that done? Prefix values is given by this kind of as I told you right by this act 

before thing. So, what you do is that you give a test fixture and a pre test setup method. 

So, you have it like this you give it a list which is a test fixture and then you set it up 

which is called before the main test method. The main test method actually has the test 

cases for execution. 

So, you say that this is the thing and I pass a new array for this. And after this in the main 

test case the main test method what we called containing the test cases, and post this I 

have what is called tear down method which gives the postfix values which basically in 

this case is not relevant because there is nothing much to do, but assuming that you had a 

fairly large piece of code postfix teardown method will actually do the rest of the 

execution to be able to see the output as being produced by the code. In this case because 

it is a small example we will directly see the output. So, there is not much postfix activity 

to be done here. 



(Refer Slide Time: 19:29) 

 

So, here is an example of a test case that uses the fail assertion. If you remember I had 

told you there are three kinds of assertions. So, if you give me a few seconds I will go 

back to that slide. Remember there were three kinds of assertions I used took different 

kinds of assert true which basically return a warning if this Boolean string that is passed 

to it. If this Boolean predicate that is passed it is returns false or it returns string if the 

Boolean predicate that is passed to it is return false. 

And then third kind of assertion will returned this string if it fails. So, here for this min 

example we will use the fail assertion and here is a test case that uses the fail assertion. 

What is this test case method called it is called test for null list so void method and it 

passes an empty list and then its tries to see if the code actually throws a null pointer 

exception. And if it does not throw a null point exception using this try and catch it will 

use the fail assert to say that it had actually expected a null pointer exception which did 

not happen. So, there is an error in the code. In our code this will not come because this 

error is handled. 



(Refer Slide Time: 20:49) 

 

So, here is another example of a test case that tests our min code for the special case of 

an empty element. So, what it says is that I tried to add an empty element in the list and I 

tried to compute its minimum. And in this case because the code is well written this is 

also taken care of it will return find and there is no error in this code even for this kind of 

test case. 

(Refer Slide Time: 21:20) 

 

Now, what are the other things that we can do with JUnit. We saw two examples this is 

with testing for two exception cases. Of course, you can go on testing this minimum code 



for several other exception cases, because the code handles several other an exception 

handling mechanism. But suppose I have to test the main functionality of the code. What 

is the main functionality of the code? The main functionality of the codes to be able to 

give a list of elements that are comparable and check if it actually returns the minimum 

value from the list; so for that I need to be able to give data, I need to be able to pass a 

list of compatible elements. How does that happen? How does one do it JUnit? 

For giving data to test with JUnit we have a constructor for them. So, that constructor 

what it does is that you can passed several different data to it and the same tests are run 

for each set of data values and the collection of these data values are defined by a method 

tag with at parameter. So, it basically helps to test a function with multiple text value. So, 

I can test a minimum function with several different lists and check for each of these lists 

does not return the minimum. I can check the add function that other two example that 

we looked at with several different arguments a and b and check in each of these case 

does it actually return the sum of a and b. 

(Refer Slide Time: 22:53) 

 

So, I will go back to the add example and show you how to use this at parameters with 

the constructor to be able to provide data along with prefix, postfix and assert. So, here is 

the complete JUnit program for the same. So, import as I told you all these various 

classes, now what I do is I have to pass data. Now I am going back to the add examples. 

So, I have to always first two integers a and b to it and check if the sum of a and b is 



actually returned by the addition code. So, I use this constructor and then I write this 

particular class that does the main testing. 

So, how does this work? If you see this dot a is equal to v 1 and this dot b is equal to v 2 

these are the variables that are used to pass the actual parameters. And then the expected 

result is stored in this dot sum. And if you go here there is an array which the first value 

set of test case values that it passes are a is 1, b is 1, and expected result is 2. The 

seconds and if test case that it passes are a is 2 b is 3 and the expected result is 5. In this 

example I have just given two so that I can explain it you, but you can pass an array of as 

many test cases as you want along with their expected outcome. 

So, what it will do is; it will go back and execute this particular method. It will execute 

this particular method, and in any case for whichever test case if this assertion fails then 

it will output that this sum is incorrect. How it does is it will do it for each of these test 

case values and the expected output. And it will finally exit without giving any assertion 

violation if all of them are passed. So, for out particular example the calculator addition 

was correct code so it will pass for all these examples. 

So, similarly for the minimum element in a list also you can put it all together right 

check it for various null pointer, empty list and other kinds of exceptions, and after 

passing all these exceptions actually use this constructers class to be able to pass several 

different list of values and their minimum element and check whether the code actually 

written the minimum element from this list; because that piece of test code in JUnit is 

fairly long to write it would not fit into even 2-3 slides, I have not given that as an 

example. What I can do is I will be putting it along with my notes feel free to look at it. 

So, hopefully at the end of this exercise you would have understood how to give prefix 

values to a test case and how to actually give the test case values write asserts that will 

indicate whether the test case is passed or failed. And if needed how to make postfix 

values in the codes such that they assert failure or assert pass actually reflexes output in 

the code. 



(Refer Slide Time: 26:01) 

 

To understand these we used JUnit. JUnit is a fairly extensive tool as I told you in the 

beginning; the purpose of this module was not to be able to teach you exhaustive features 

of the JUnit, but to be able to teach you how to use JUnit for test automation. So, feel 

free to go download JUnit and explore all its other features and try it out on your own 

Java programs to be able to see if you can test them or not. 

(Refer Slide Time: 26:27) 

 

So, where are we going on from this? So now, we saw how to automate and once you 

automate and execute JUnit also has an execution framework. As I told you it is fully 



command (Refer Time: 26:39) fully automated. So, there is nothing much to discuss 

about it, I will not be discussing about that in detail. After that you actually observed by 

using assertions the result of failures. 

Now if you go back right to the first step; that is test case design it actually tells you what 

are the test cases that you pass on to a tool like JUnit for automating. How do you design 

test cases, how does one go about giving effective test cases without giving blind test 

cases and not hoping to find any errors. So, for this we go back to the problem of test 

case design. So, we will look at criteria based test case design, we model software using 

different mathematical model structure as I told you graphs, logical expressions, sets and 

so on. And teach you how to design test cases based on each of these. So, that will be the 

focus of my lectures beginning next week onwards. 

Thank you. 


