
Software testing
Prof. Meenakshi D’Souza

Department of Computer Science and Engineering
International Institute of Information Technology, Bangalore

Lecture – 38
Mutation testing: Mutation operators for source code

Hello again welcome to the fourth lecturer of week 8. If you remember we were been

doing mutation testing throughout this week last lecture I took an example of a small

program we did two methods, and I told you how to apply mutation to particular

statements in the program, how to write test cases that would kill those mutants we

distinguish between two notions of killing strong feeling and weak killing we saw

examples of both kind, we also saw examples of an equivalent mutant for the first

method that we saw. How are these mutation operators obtained, how these statements

are mutated. These statements are mutated by using an underlying set of mutation

operators that are available for several different programming languages.

(Refer Slide Time: 01:02)

So, the focus of this course is to understand mutation operators as I have been telling you

mutation operators are available for many programming languages like C, Java, Ada,

Fortran lisp and so on. They are available for integration testing of c which focuses

purely on procedures calling each other. They are available for integration testing of java

which focuses on class integration testing methods calling each other and so on which

we will also see.

Then we will come to specification, mutation operators are available for formal

specification and modeling languages like SMV and USMV they are available for

markup languages like XML which we will see as a part of this course. Some each of

these languages we know is different it forms slightly different subset has different

syntax and more or less the same set of programs can be written with any programming

language. So, what we will see today is like a common set or a generic set of mutation

operator that cut at cuts across all the different programming languages and we will also

see mutation operators that apply at the individual statement level within a program.

(Refer Slide Time: 02:06)

So, these are not the operators that are going to focus on integration testing as I told you

here they are going to focus on unit testing, we are going to mutate individual statements

in the program by making small changes to each statement in a program as and when it is

necessary to test the execution of a program. What are these mutation operators designed

for? Typically programmers when the unit test they code, why do they do unit test? It

unit testing helps them to detect simple mistakes that these programmers make

themselves for example, instead of writing less than or equal to they could have written

less than instead of writing array index is beginning from 0 they could have written as

array index is beginning from one and so on. So, these are simple programmer mistakes.

And what we are going to see is a reasonably exhaustive list of mutation operators, they

try to mimic or mutate to mimic these simple programmer mistake, these could be

operators that change relational operators as I told you maybe he suppose to do less than

or equal to, but instead the programmer did less than or maybe greater than or equal to

instead he did greater than or maybe he had to do I plus plus instead of that he did j plus

plus so; that means, he changed variable name or a variable reference.

So, we are going to see mutation operators that mimic these kind of mistakes they make

small changes that mimic these mistakes and see how the program behaves if the mutant

can be killed or not they are also a design to encourage testers to follow common testing

heuristics what do we mean by that? One common testing heuristic which every

individual tester is suppose to do see is to see how the individual method that he or she

has written where in the variables in that method become 0 is it fine. Because maybe

somewhere in the code there is a division by 0 or there is division by some number that

could potentially become 0. So, every programmer the (Refer Time: 04:12) some each

programmer to test their code to see if all exceptions including variable names being 0

are being handled correctly.

So, for that we will see a specific mutation operator which we already used in the last

lecture called fail on 0. mutation operators that we will see will be fairly exhaustive in

the sense that it will be like a laundry list of all possible different mutations that you can

do to a particular statement. Typically most of the times it is not the case that a

programmer has to use each of the kind of mutation operators that we will be present in

today to be able to test his or her code, but as a list the onuses on these tools and on us to

be able to provide an exhaustive list, we never know which of these operators from the

list is going to be useful to a programmer for his or her code, but this list is exhaustive,

but the use is not meant to be exhaustive use is meant to be selective as and when needed

for specific pieces of code for unit testing.

(Refer Slide Time: 05:26)

And while mutating a program and testing it the programmer has to create tests to be

able to kill the mutant either strongly kill it or weakly kill it. So, when I said in this

exhaustive list of mutation operators how will a test of pick which are effective mutation

operators how do I know which set of operators are effective. So, here is a definition of

effective mutation operators it says if tests are created specifically let us say you start

with a collection of mutation operator call that ser as the set O, given as O 1, O 2, O3 and

so on some finite set of mutation operators. You made these mutations one at a time to

the given piece of program and you are writing test cases to kill these mutation operators.

If the test cases that you have killed written to kill these mutation operators also

happened to kill other unused mutation the remaining mutation operators with very high

probability. You may or may not know whether they were actually killed, but let say they

happen to kill the other remaining operators with very high probability, then you say that

the underlying set of mutation operators that a programmer has to picked his turning out

to be effective. So, just to repeat it a programmer has a method with him and now the

idea is to apply some set of mutation operators to test that individual method written by

the program. Let say the programmer picks let say 3 different set of mutation operators to

apply from the exhaustive listing.

So, when do we call these 3 mutation operators is being effective. Let us say the

programmer after testing with a reference to these 3 mutation operators also happened to

realize that these 3 mutation operators also happen to kill other mutation operators that

he did not apply, then you say that the 3 mutation operators chosen by the programmer is

an effective set of mutation operators. So, it will be a great thing if (Refer Time: 07:17)

given a method or a piece of language, if you could have algorithms that determine right

up front which are the effective set of mutation operators. Unfortunately it is a difficult

problem in np complete or sometimes an undecidable problem to be able to determine an

effective setup mutation operators, even at the level of an individual methods.

But typically various empirical studies in software engineering have indicated that

mutation operators of this kind; those that insert unary operators, and those that modify

unary and binary operators, have proven to be very effective from the point of view of

this definition. So, that is the list that we are going to see in this lecture today.

(Refer Slide Time: 07:59)

So, what we do now is that I will provide a list of program level mutation operators, what

do they deal with? They deal with unary binary both relational and arithmetic and logical

operations. They cut across several different programming languages they can be applied

for C, for java or for any other programming language that has a similar set. And I will

be giving you an exhaustive list of mutation operators there will be so many different

ones. Please remember that you need not apply given a piece of program or a method

you need not apply every kind of mutation operators. Choose a small subset from this

such that you can make use of this list of mutation operators to be able to effectively

mutate your program in test.

It is useless to pick everything from this list because it is a fairly large list. So, what are

we what are the exhaustive large list of mutation operators that at the program level that

we are going to see so that is what will the rest of the lecture b. So, I will give each of

these collection of mutation operators that we are going to see a name like this, that name

will be written in blue in every slide. So, it just tells you what is the kind of mutation that

we are going to apply. There are first collection of mutation operator that we are going to

see is what is called absolute value insertion.

(Refer Slide Time: 09:19)

We will see what it is later I will tell you set of mutation operators called arithmetic

operator replacement, we will after that to relational operator replacement, after that do

conditional operator replacement, after that do shift operator replacement and so on we

will see a fairly large list.

(Refer Slide Time: 09:25)

So, each slide will have one collection of mutation operators that belong to one particular

category, and remember typically.

(Refer Slide Time: 09:29)

When you test a program only a small number from this exhaustive set is enough to test a

program.

(Refer Slide Time: 09:32)

So, we begin with our first set which we call absolute value insertion. So, what we do

here? Let us take a statement if you look at this example here down the slide, let us take

a statement like x is equal to 3 star a it is a normal assignment statement. What I am

going to do is that I am going to change this to replace the variable a, with it is absolute

value call it as ab s of a, I am going to replace the variable a with a negation of it is

absolute value this is called neg abs of a, and I am going to replace a with 0 through the

mutation operator fail on 0. So, for this statement which looks like this a is an absolute

value that a is a variable, whose which for which I am mutating by considering 3

possible different mutation operators instead of a I take the absolute value of a that is this

first mutated statement that I get, and the second one instead of a I take the negation of

the absolute value of a that is the second mutated statement. The third one instead of a I

do fail on 0 of a which makes a as 0. So, those are the 3 mutation operators.

So, this I can do for any statement and given any program. So, I say whenever I have

find an arithmetic expression or a sub expression, and I find a variable in that arithmetic

sub expression then I can apply 3 different possible mutations to that variable. One

possible mutation returns the absolute value of that expression or the variable, one

possible mutation returns the negation of the absolute value of the expression of variable,

the third possible mutation tests whether the value of the expression is 0 or not. If it is

happen to be 0 then we say that the mutant fail on 0 is killed, otherwise the mutant is not

killed the execution continues and the value of the expression as it was originally in the

program is returned.

So, the next set of mutation operators that we are going to consider belong to this

category of operators called arithmetic operator replacement. If you see in a typical

programming language is what are the arithmetic operators that are there, there is

addition plus subtraction minus multiplication, star, division, exponent mod; so, this is an

reasonably exhaustive list of possible arithmetic operators now if you go down and look

at the example let us say there is a statement that look like this x is equal to a plus b. It

has one arithmetic operator in it this is the plus. So, I could create 7 different mutations

of the statement based on my need, where I replace this arithmetic operator plus with

either minus or star or slash which is division or exponent or there are two other special

things where I knock off one of the operants, I retain only the left operant, here I retain

only the right operant or I could replace this arithmetic operator with a mod so, that is

what it says. It says take any statement which has an arithmetic operator in that each

occurrence. So, this example the arithmetic operator that we begin with this plus, but it

could be the case that the statement original statement was x is equal to a minus b, in

which case you choose something else in this list of arithmetic operators to mutate it with

I hope that is clear.

So, what it says is that the statement or the expression could have any of these arithmetic

operators, you take that arithmetic operator out replace it with some other arithmetic

operator from this list based on you need. Two special kind of other mutations can also

be done one mutation is called leftOp, what is it do? It returns only the left operand the

right operand is ignored that is what we did here for this example. If I had a statement x

is equal to a plus b if I apply the mutation leftOp it results in this x is equal to a that is the

change that I make the statement to see what would the program do similarly rightOp

returns just the right operand. So, if I had the left one is ignored. So, if I had x equal to a

plus b and I apply rightOp then I get x is equal to just b, a is ignored and what is mod do

mod computes the reminder when the leftOp is divided by the rightOp the standard thing.

So, is that clear.

So, in summary what we saying there could be statements in the program, which have

arithmetic operations in them one possible way to mutate such statement would be

replace that arithmetic operator that you find in that expression in that statement. If it is a

plus you could replace it with minus star slash mod and so on. If it is a minus you could

replace it with plus star slash mod and so on. So, this collection of mutation operators put

together is called arithmetic operator replacement. Moving on just as arithmetic

operators you could do relational operator replacement again what are the exhaustive list

of relational operators that are available in programming languages, there is less than

there is greater than less than or equal to greater than or equal to equal to and not equal

to.

Let us say there was an expression that look like this. I had an expression which says m

is greater than n, I had a predicate sorry which says m is greater than n and my goal may

be I do not know may be the programmer should have written m greater than or equal to

n. So, I want to mimic and see is this a mistake paid by the program. So, I mutate the

predicate m greater than n by replacing the relational operator greater than with greater

than or equal to. So, or maybe sometimes the programmer intended to do less than. So, I

could mutate the predicate if m greater than n by replacing this relational operator greater

than with the relational operator less than. So, what it says is that any occurrence each

possible occurrence of one of the relational operators, which is this list 6 of them could

be replaced by each of the other relational operator. In addition you could do two special

mutation operations one is called falseOp one is called trueOp. What is falseOp do?

FalseOp will replace this whole predicate with false trueOp will replace this whole

predicate with true.

For example if I had an if statement that look like this if m is greater than n, then I could

create seven different mutations from that I could replace this greater than relational

operator with great than or equal to create this statement if m greater than or equal to n,

or I could replace greater than with less than to create the statement greater than with less

than or equal to greater than with equal to, greater than with not equal to, I am sorry this

should be not equal to then greater than be just false maybe it is a contradiction, it useful

to test it for this, and greater than m greater than n be just true to test for being a

tautology. So, is that clear please. So, what are we saying we say that if I have a

predicate, a logical a continuing a relational operator, I could create a mutant of that

predicate or a clause by replacing the actual relation in the relational operator by any of

the other ones that are available. Two special ones I could replace the whole clause by

true I could replace the whole clause by false.

Moving on, similarly I can do conditional or logical operator replacement. So, what is

conditional or logical operator replacement? So, what are the various logical operators?

They are and they are or and with no conditional evaluation denoted by a single

ampersand and or with no conditional evaluation which is denoted by a single vertical

bar and not equal to which I denote by this caret symbol. So, I could replace each of

these with the other to create so many different mutants. In addition I also have 4 special

mutation operators what are the special mutation operators? True and false which are

very similar to this one that we saw here, false returns false true returns true and I have

leftOp and rightOp which were similar to the one that we saw in the arithmetic

expression rightop and leftOp. So, true returns trueOp returns true, falseOp returns false,

leftOp returns the left operand the right operand is ignored righOp returns the right

operand and the left operand is ignored.

So, for example, if I had a predicate that look like this and an if statement with that

predicate. Let say if a and b then I could mutate the predicate by replacing this relational

operator and with any of the other one. So, I could replace and with an or to get this I

could replace and with an and with no conditional evaluation to get the second

expression here, I could replace this and with an or with no with conditional evaluation

to get the third one, this is replacing and with not equivalent, this is the fourth one this is

replacing and with false this replacing a and b with true, this is knocking of the b from a

this is knocking of the a from a and b. I hope this is clearly right it is a fairly routine

thing, I take one operator of one kind I can substitute it with any other operator of any

other kind. Now you might ask why cannot I replace this and with e with let say plus?

That would not make sense right why because the type of a and b is meant to be Boolean

and I should replace one operator with an another operator of the same category. Please

remember that the mutants that I create from program still have to be valid in the sense

that the resulting program has to compile.

So, arithmetic operators that we saw here can be replaced with other arithmetic operators

only, conditional operators relational operators can be replace to the other relational

operators only, conditional operators can be replace with conditional operators only and

so on for all the other groups that we are going to see for the remaining part of this

lecture also. So, the next set of mutation that you could have do is regarding the shift

operators. You might have seen this left shift right shift and right shift has two categories

signed and unsigned. So, this is the left shift operator, this is the signed right shift

operator this is the unsigned right shift operator. Unsigned right shift is the counterpart of

left shift, signed right shift is meant to take care of negative numbers also

So, each occurrence of these shift operators can be replace by the other occurrence. In

addition I have this special mutation operator which just returns the left operand which is

un shift. So, if I had a statement like this which says x is equal to m left shift a, I can

mutate this statement to create 3 different mutations I can replace this left shift with

unsigned ah sign right shift I can replace with this left shift with unsigned right shift or I

can replace this left shift by knocking of the left shift and the a, do not shift and return

only m. So, these are 3 mutations that are possible when you have statements in your

program that deal with shift operations.

Moving on suppose you had a statements in your program that deal with bitwise logical

operators. That is they work a lot like and an or, but when given a sequence of bits or

binary numbers, they and an or exclusive or bit by bit by applying the same truths table

for and or. So, each occurrence of each of the bitwise operators the bitwise and the

bitwise or the bitwise exclusive or, can be replace by each of the other operators when

we do mutation operators here. In addition I can also do leftOp and rightop like I did for

arithmetic and other categories. LeftOp always returns the left operand right one is

ignored, rightop returns the right operand left one is ignored.

So, suppose I had a statement like this x is equal to m bit wise and n, then I can create 3

possible mutants of the statements, I could replace this bitwise and by bitwise or this is a

first mutant, I could replace this bitwise and bitwise exclusive or the second mutation, I

could knock off the second left the right operand and consider only x is equal to m, I

could knock off the left operand and consider only x is equal to n.

(Refer Slide Time: 22:16)

So, these kind of mutations are possible dealing with bitwise operations. Similarly I

could also consider these assignment operators plus equal to, minus equal to, star equal

to, slash equal to, percentile equal to and so on and I could replace each occurrence of

each kind of assignment operator with the other occurrence.

For example if I had a statement which said x plus is equal to 3, I can mutate it to create

ten different statements. I could say x minus equal to 3 x star equal to 3 x slash equal to

3, x slash equal to 3, x a mod equal to 3 and so on and so forth.

(Refer Slide Time: 22:49)

Now the other kind of mutation that I can do is unary operator insertion; what do we

mean by that? Let us begin by understanding the example suppose there is a statement

which says x is equal to 3 into a. Now I can replace this a with minus with plus a create

one mutation, this mutation turns out to be equivalent to this because if a is positive then

plus a has the same sign as a, if a is negative also then the same thing. So, I list this for

the sake of completeness, but these two are equivalent, then I could replace this a with

minus a create another mutation.

Similarly, I could replace 3 with plus 3; here again it is just an equivalent mutant might

as well not created because it gives the same expression, but it listed here for be the for

the sake of being exhaustive, I could replace this 3 with a minus 3 to create such an

expression. So, that is class of mutation operators is what is called unary operator

insertion. What do I do here? Each unary operator which is the arithmetic plus the

arithmetic minus the conditional and the logical is inserted before each expression of the

correct type. Here I had arithmetic expression. So, I am considering only the arithmetic

unary operators later I could consider the logical or the conditional unary operators.

(Refer Slide Time: 24:07)

Just as replacing I could delete a unary operator all together, each unary operator can be

deleted it could be the plus, it could be the minus, it could be a conditional operator, it

could be a logical negation I can delete it.

For example here I say if a is greater than minus b, I could say a is greater than minus b

which is the same as this or I could remove the minus b and say a is greater than b. So, I

could remove that. Now this is a very useful thing which we also used in the example

that we saw in the last section, there are variables where I find an expressions throughout

my piece of program.

(Refer Slide Time: 24:33)

And those variables are called scalar variables because they are not as vectors, there is

one individual variable. What I can do is I can mutate the program by considering each

variable reference and replaced it with some other variable reference such that the type

matches. So, the expression continues to getting evaluated and not only the type should

match, the other variable reference that I replace this with should be within the scope,

that is what is true this thing I cannot pick up a another variable far away somewhere else

in the program and suddenly substitute it here. It should be within the scope because if it

is within this scope then things like declaring the variable and all other things will be

taken care of, and mutating this way is effective than replacing with a random undeclared

variable.

 So for example if I had a statement x is equal to a star b, then what can I do I can take

this and replace this b with a to create an expression like this, x is equal to a star a I could

replace the x with a to create another expression like this, I could replace the a with x to

create this third expression I could replace b with x to create the forth expression, I could

replace a with b to create this expression and finally, I retain the same thing is that clear.

There is no point now in picking up a completely new variable let say c, that is out of the

scope of this statement and replace x is equal to c in to b maybe the program will

complain saying c is not been declared and so on. So, you do not want to risk remember

programs have to compile they have to be valid. So, when I do always replacement I am

always replace variables such the type of the variables match at sorry and the variable

that is declared is within the current scope.

(Refer Slide Time: 26:29)

Finally we saw the last time this the special mutation available called bomb statement

what is this bomb statement do? Bomb signals a failure as soon as it is reached it is like

making the program fail at that statement and see what happens. This is another common

testing heuristics which many companies that recommend unit test has to do. So, they

say reach each statement. So, one way to make sure that the program execution has

reached a particular statement is to replace that statement with a bomb when the program

reaches that statement, it will terminate. So, you know that the program is reach that

statement.

(Refer Slide Time: 27:07)

So, bomb is a very useful mutation operator. So, what did we do in this lecture? We saw

an exhaustive list please remember the word is exhaustive there is no point in

considering each and every mutation operator that we saw today for every program that

you test for. You should carefully select from this list, which is the one that I want to test

in my program, which is the property, which is the statement.

If I want to test this statement for one particular property which would be a good

mutation operated to pick from the list that we learnt today that is how you should use it.

And typically it is applied during unit testing to mimic typical programmer mistake as I

told you. In the next lecture what I will be telling you is we saw mutation testing and one

question that might naturally arise in your mind is, how does mutation testing compare to

graph testing or how does it compare to logical predicate testing because they were also

white box testing techniques right. So, that is what we will see we see that mutation

testing in fact is very powerful it subsumes a lot of criteria from graph base testing and

from logical base testing.

Thank you.

