
Software testing
Prof. Meenakshi D’Souza

Department of Computer Science and Engineering
International Institute of Information Technology, Bangalore

Lecture – 36
Mutation Testing

Hello, welcome to the second lecture of week 8. So, what are we going to do today last

time I told you that mutation testing means testing for the syntax of a program; syntax of

a program deals with regular expressions and grammars? So, I gave you a very brief

quick introduction to regular expressions and context free grammars and this time what I

am going to do is I am going to introduce you to mutation testing next week.

(Refer Slide Time: 00:38)

We will see how to apply mutation testing to source code. So, what is mutation testing

involve the term mutation in the in biology or generically means you make a change. So,

in biology you make changes cells undergo mutation they undergo changes when we

apply mutation testing in the context of software testing we say a software artifact

undergoes the change.

So, the software artifact that could be mutated or changed could be a program could be

an input could be a design document it could be one of the several different things. So,

mutation testing means you make changes most of the time the changes are syntactically

valid I will explain to you what that is to a software artifact and then test the artifact

when I say syntactically valid change I mean the following. So, you consider the

software artifact we have be piece of source code or a program now I make a change to

see how the changed program behaves with reference to the original program. So, for me

to be able to test the changed program the first thing that I must do is to be able to

compile the changed program.

So, the changed programmer must be syntactically valid it should be a compilable

program. So, while doing mutation testing we mutate by making changes how are the

changes defined the changes are defined by using mutation operators and where do the

mutation operators come from they come from grammars of software artifacts grammars

typically generate valid strings everything to the generate is syntactically valid as per the

production rules of a grammar we use derivations in grammars to generate valid strings.

And sometimes we use derivations to generate invalid strings also when do we generate

invalid strings in the grammar we generate invalid strings only when we consider

mutation as being applied to the inputs of a program when we mutate a program itself

then we expect the program to be valid because it needs to be compilable.

But sometimes we want to know how a piece of program given program behaves on

inputs that are invalid how does it handle invalid input. So, when we do that we mutates

to produce invalid string from the grammar corresponding to the input domain. So,

testing based on generating these valid strings and invalid strings for different artifacts is

what is called mutation testing mutation testing as I told you can be applied to program

source code it can be applied to design integration it can be applied to input space and it

can be applied to change the requirements themselves.

(Refer Slide Time: 03:08)

So, here are some terms that we will use throughout our lectures in mutation testing. So,

I have a particular software artifact that I am trying to mutate or make a change in that

software artifact is what is called a ground string. So, ground string is a software artifact

that I want to mutate in other words it is the string in the grammar of the corresponding

software artifact it is a string in the underlying grammar and how do I mutate I mutate by

making what is called a mutation operator what is a mutation operator a mutation

operator is a production rule or a rule that specifies syntactic variants of strings that can

be generated from the grammar every string generated by grammar as we saw in the last

lecture comes by applying a sequence of rules one after the other.

Till we get a string only of terminals at some point during the sequence of derivations

that I apply I decide to apply another rule instead of the original rule that was used in the

string and such a rule that I apply instead of the original rule is what is called a mutation

operator. So, I begin with the ground string I apply a mutation operator after applying

mutation operator I have changed a mutated the ground string the changed or mutated

ground string is what is called a mutant. So, a mutant is the result of applying exactly one

application of a mutation operator. So, you might ask why exactly one why not more you

can apply more as long as the changes are syntactically valid and you are confident of

how the mutated program will behave, but typically in mutation testing it is

recommended that you apply mutation operators one at a time. So, we will discuss this

we will revisit this question once again very soon in this lecture.

But just to move on before we move on I would like to summarize let us say you testing

a java program using mutation testing the original java program that you begin with is

called a ground string you take the java program apply one mutation operator that is one

change to the underlying grammar from which the java program comes by applying

some rule instead of the other rule the change that you make is called mutation operator

or applying a mutation operator the resulting string is another syntactically valid java

program whose behavior you want to test against the original java program.

(Refer Slide Time: 05:36)

So, the changed the java program is what is called a mutant. So, the ground string could

be a program as I told you could be a java program it could be specified using the

grammar of java it could also be an input format specified using a markup language.

Several different things take XML format several different software programs take XML

format corresponding to an entity as their input format sometimes I want to be able to

test the software artifact by changing the input to a syntactically invalid input or another

valid input and see how the program behaves under these invalid inputs when I do that I

used the grammar to generate implicit invalid input also. So, when I do that I get invalid

inputs and in that case ground strings result as those that arise by not applying a mutation

operators. For example, as I told you when we mutate the inputs to a program; program

remains the same it is still the ground string, but the mutation operator is applied on the

inputs to a program the program and the resulting mutant are the same, but the mutated

input is what is changed and in thus this cases it can be invalid also.

(Refer Slide Time: 06:48)

So, here is a simple example of how to apply mutation at a basic grammar level next

lecture I will show you how to apply mutation to source code by taking concrete

examples of programs if you remember we saw this grammar in the last lecture and this

was some valid strings that we were generated by grammar this grammar used notations

that were a combination of regular expression notations and grammar notations and this

vertical bar is to be read as 2 rules this rule and then this rule. So, here are some

examples of strings generated by grammar this was generated by this grammar G

1708.01.90 and B 13 06 27 94; here are 2 examples of valid mutants.

How did I get this; how did I get the first mutant I took this string this string had a

derivation in the grammar at some point this G was derived. In fact, write in the

beginning G will be the first terminal string to drive after the third or fourth step in the

derivation when this production rule is applied instead of now this G whenever this

production rule was applied I picked up the same derivation which gave this at that point

instead of deriving G I applied the 4 production rule and got B instead to that is the only

change. So, at some point in the derivation of this string I decided to take out one step in

the derivation and replace it with a different production rule in particular whatever was

giving me G I replaced it with b. So, this is a valid mutant.

So, here is another example I take the same string G is 17 08 01 90 at some point this

number 17 was generated because this rule was applied S goes to digit 1 2 3; it picks up

randomly a digit that is between 1 and 3 length long and applies it and here the digits that

was picked up was 1 and 7 and it was of 2 digits long instead of picking up 1 and 7 at

pick up 4 and 3. So, from this I get this valid mutant here are examples of 2 invalid

mutants from the string the first invalid mutant says you take this string G 17 08 01 90;

instead of G you get 12 why is this an invalid mutant. If you see this grammar you will

realize that no there is no way that this particular string can be generated you can never

general 12 17 08 01 090 the way this grammar structured every word of this form we

will begin with the G or a B because it begins with the 12 and it cannot be generated by

the rules or the grammar we call it an invalid mutant maybe these are inputs to a program

and you want to check if the program throws in an error saying this input format is

invalid.

Here is another example of an invalid mutant this is the same thing G 23 08 01 and the

last 2 digits of this eight like entity is missing here is another this is an example of

invalid mutant because there is no way I can generate this string from this grammar again

because when I reach this stage where I apply this GSN or BTN and I finished applying

for S. Now I have to apply for n at 1 in 1 shot I generate this whole thing I generate digit

2 dot digit 2 dot digit 2. So, this one if you see does not have the second dot and the third

2 digits. So, it can never be generated in this grammar.

(Refer Slide Time: 10:12)

So, that is why it is an invalid mutation. So, here are some do's and do not’s as far as

mutation operators are concerned the first question that we discussed a little while ago in

this lecture was should I apply exactly one mutation operator to get a muted mutant or

should I apply more than one mutation operator to get a mutant.

So, that is the first question. So, should it contain just one mutation operator or it can

contain several mutation operator the ideal recommendation that people use a mutation

testing is do not do more than one work with exactly one minute it is good enough and

after analyzing that you work with the next mutant experimental and theoretical evidence

indicate that it is usually very difficult to track the program behavior when more than one

operator is applied. Because you do know whether the change in the mutated program is

because of which operator that I apply even if you apply to you do not know with the

change might be difficult for large programs to isolate and say that this changes because

of the first operator this behavior changes because of the second operator it is very

difficult to do that. So, always the voice thing to do is to apply one mutation operator at a

time the second question that you might want to ask you should every possible

application of a mutation operator to a ground string be considered in the sense that I

have a grammar of a programming let us say language a grammars usually fairly

exhaustive and if you try to generate mutation operators based on the grammar you will

get lots and lots of operators hundreds sometimes even thousands of operators.

So, now for a given program they could be several different ways of mutating it should I

consider every possible mutation and test that is like exhaustive testing with reference to

mutation the obvious answer is no, but sometimes for small programs people say yes

also. So, yes if you can do it carefully and in a systematic way know if you do not know

that it is not useful typically it is not useful to do exhaustive mutation testing.

(Refer Slide Time: 12:14)

So, the answer is a know; now, what are the mutation operators mutation operators take

the grammar and make one change with reference to the grammar that is what I told you

nutrition operators have been designed for several different programming languages. We

will see one for java in the next couple of lectures they have been designed for formal

modelling and specification languages especially for model checkers like new SMV and

SMV they have been define for several different grammars and Backus Naur form I keep

using this term be enough I did not really introduce you to you the term be enough we

just saw context free grammars.

But there almost always given in Backus Naur form the fact that it comes in this normal

form may not be very important for our lectures. So, I skipped introducing the BNF part

of the context free grammars when we did context free grammars we do not really need,

but it is important to know that they do not come in any format they always come and be

enough format mutation operators are also available for data definition languages like

XML they are available for several different query languages SQL and so on mutation

operators for programming languages which are the phases they can be applied in they

can be applied while doing unit testing and valuing integration testing there are

integration level mutation operators that are also available. So, what we will see from the

next lecture on words is we will see some mutation operators for java for good number

of lectures and when I end mutation testing towards the end we will see mutation

operators for XML also.

(Refer Slide Time: 13:44)

Some more definitions related to mutation testing before we move on for a given artifact

like source code or requirements or design let m be the set of total number of mutants

each mutant m in m we will lead to a different test requirement testing goal in mutation

testing is to be able to kill the mutants what is it mean to kill the mutant it means the

following you take the original program called ground string apply one mutation

operator get a mutant or a mutated program now take a test case run the original program

on that test case take the mutated program run the same test case on the mutated

problem. If these 2 programs the original program and mutated program produce outputs

that are different for the same test case then you say the test case has killed the mutant

right. So, given a mutant m for a derivation d and test t the test t is set to kill the mutant

m if and only if the output of t on d is different from the output of t on m I hope that is

clear right take a program apply one mutation operator get a mutated program pick a test

case run it on the original program run it on the mutated program if the 2 programs

produce different outputs then you say the test cases killed my mutant.

Is it definition is very important because the core of mutation testing and this lies and

understanding or designing test cases for killing mutants. So, the derivation d could be

represented by the complete list of production or simply by the direct result and final

string which could even be the program.

(Refer Slide Time: 15:24).

So, here are some coverage criteria for mutation testing the first coverage criteria that we

define is what is called mutation coverage. So, for each mutant that you apply to the

original ground string for each mutant m in m test requirement or TR contains exactly

one requirement you kill that mutant. So, when I make a change to a ground string and

get a mutant I should be able to write a test case to kill the mutant. So, if I enable to do

this for every mutant then I have achieved what is called mutation coverage the amount

of coverage that you achieve in mutation testing is usually return as the percent of

mutants killed like for example, suppose I have a small java program and it happens to

be the case that there are 15 different mutants that I can get from this java program which

means what I can make 15 different kind of changes one at a time to get 15 different

other java programs.

Let us say out of these I manage to write test cases the way that kill 15 of these mutations

let us say the test cases that I right I am able to kill only let us say 10 of these 15 different

mutations that I have done the remaining 5 mutants of this given java programmer such

that no matter what kind of test case it is it can never kill the sense that the behavior of

the original program we will be the same as the behavior of the mutated program if that

is the case if you manage to kill only 10 out of 15 mutants then the mutation score says

that you have killed only 10 out of 15 mutants which means you have roughly killed

about 75 percent of the mutants that you created. So, the amount of coverage is usually

means the amount of killing of the mutants that you can do is usually written as a percent

of mutants killed and is called mutation score.

Suppose for all the 15 different mutants that you wrote you manage to write test cases

that kill all the 15 different mutants that does not mean that you have tested in a more

effective it is in fact, a myths to belief that the more mutants that I write and kill the more

effective that I have tested the programmer these 2 do not really correlate to each other

another kind of coverage criteria over mutation testing or mutation operator coverage

and mutation production coverage.

(Refer Slide Time: 17:30)

So, when a grammar is mutated to produce invalid strings like we do for mutating inputs

the testing goal is to run the mutants to see if the behavior is correct. So, in which case

mutation operate operator coverage abbreviated as m o c says for each mutation operator

TR contains exactly one requirement to create a mutated string m that is derived using

that particular operator.

So, suppose at some point and time there was an operator that is said you use less than or

equal to and you are able to create a mutation where instead of less than or equal to you

use greater than or equal to. So, this is called one mutation operator. So, I rate a test case

to cover this mutation operator similarly I can define what is called mutation production

coverage what is that say for each mutation operator and each production the operator is

applied to test requirement contains a requirement to create a mutated string by using

that production. So, the production rule that changed the greater than or equal to 2 less

than or equal to use the rule make the change and write a test case to kill that mutant

resulting mutant program.

(Refer Slide Time: 18:44)

So, these are the 3 mutation coverage criteria. In fact, we will see them for programs and

see how they apply the number of test requirements that I need to achieve mutation

coverage criteria is somewhat difficult to quantify.

It basically heavily depends on the syntax of the underlying software artifact or the

program and what are the mutation operators that I have considered typically as I told

you exhaustive mutation testing is never done, but operators are available as a fairly

large exhaustive sets to choose from because you never know which operator we will

come to use and it is a fairly routine mechanical programming tasks to generate mutation

operators given the grammar of a software artifact. So, even though an exhaustive set of

mutation operators are available mutation testing is never exhaustively done by applying

every possible operator that is available people usually do not do that.

Typically mutation testing is supposed to subsume a lot of other coverage criteria we will

see precisely a comparison to several other coverage criteria that we saw and how

mutation testing subsumes which of those mutation testing is very difficult to apply by

hand because it involves grammars and there are mutation testing tools available towards

the end I will point you to links of these kind of tools. In fact, mutation testing is very

difficult it is difficult to apply by hand it is difficult to automate also mutation operators

are difficult to automate, but the per say testing process after you have created the

mutated program designing a test case to kill the mutant there automation is difficult and

you need human intervention and domain knowledge and which operator to apply they

are also you need human intervention and domain knowledge.

(Refer Slide Time: 20:22)

So, in the next lecture what are we going to see we learn how to define mutation

operators how to apply mutation testing to programs or source code to begin with then

we will apply mutation testing to do design integration finally, we will apply mutation

testing to a markup language like XML and understand how mutation testing applies to

input space to create invalid inputs and how the programs react to invalid inputs. So, that

is the plan for mutation testing.

Thank you.

