
Software Testing
Prof. Meenakshi D’Souza

Department of Computer Science and Engineering
International Institute of Information Technology, Bangalore

Lecture - 34
Input Space Partitioning Coverage Criteria: Example

Hello again, welcome to the last week lecture of 7, we will be done with input space

partitioning this week. So, what did we to till now I began the week with telling you

about functional testing, we saw various popular categories of functional testing, then I

moved on to looking at one particular core functional testing technique namely that of

input of space partitioning. We saw various of partitioning inputs in the third lecture

interface based partitioning in functionality based partitioning. In the last lecture I told

you about coverage criteria that you could define based on input space partitioning.

(Refer Slide Time: 00:45)

So, we have 6 different coverage criteria: the exhaustive input space partitioning

coverage criteria is what is called all combinations coverage or a CUC write up here and

the weakest is consider each choice of values from each partition of the blocks that is

each choice criteria is arbitrary consider to be a weak coverage criteria. In between the

popular one is pair wise coverage criteria where for every partition of the input space per

pair of partitions you park and then let the others vary- then you park another pair of

partitions let the others vary.

This is supposed to pay them one of the most power full input space partitioning

coverage criteria that is used. An extension of pair wise would be T wise coverage

criteria where instead of working with a pair of partitions you work with T partitions at a

time for a T that is greater than or equal to 2. The T happens to be all the partitions put

together than we saw that it means nothing but all combinations criteria.

The once on the left hand side where doing coverage arbitrarily without focusing on any

particular characteristic or particular partition, we defined what is called base choice

partition which is the partition that would you like to focus on for some reason. And then

we define 2 coverage criteria based on the base choice partition one is single base choice

coverage also called base choice coverage. The next is multiple base choice coverage,

where the number of base choices could be more than 1; you could choose more than 1

base choice coverage.

(Refer Slide Time: 02:36)

So, we saw all these 6 coverage criteria in the last lecture. Well, took an abstractive

example and showed you how test cases or T r for each these of coverage criteria will

look like. What I will do today is we will take one of the examples that we have done

before in particular we will take that triangle type example and then we will consider the

partitions that we had define in the third lecture for this week based on interface domain

partitioning. And I will tell you how each of these coverage criteria can be defined on

partitions for triangle type.

So, just to recap triangle type was a program that took 3 sides of a triangle as input and it

was defining the classifying the triangle; whether it was not a valid triangle or it was a

scaly in triangle or an isosceles triangle or an equilateral triangle based on the sides. So,

one classic input space partitioning would be to consider; what is the relationship of each

side to let us say a 0 number or a 1 number.

Why is this kind of criteria important? It is important because of the side is less than 1

than we define invalid triangles and all other cases we defined various kinds of valid

triangles. So, if you remember last lecture ahead; I mean in the third lecture I had shown

you this example for interface base inputs partitioning test requirement for that the tri tap

example. They were 3 criteria the first one said what is the relationship of side 1 to 0: is

it greater than 0, is it equal to 0, is it equal to 1 or is it equal to 0. Similarly what is the

relationship of side 2 to 0 and what is the relationship of side 3 to 0? Each these 3 cases

we considered 4 patricians. So, we take side 1 side 2 and side 3 to be greater than 0, all 3

sides to be equal to 0, all 3 sides to be equal to 1 and all 3 sides to be less than 0.

So, these are 4 partitioning and it covers between them both valid and invalid triangles as

we saw.

(Refer Slide Time: 04:12)

Now, what could be possible test cases for this test requirement, here is one example

valued. So, let us say side 1 if you go back it is a choose values of side 1 greater than 1 0

equal to 0 equal to 1 less than 0; similarly for side 2 and side 3. So, I have chosen value

like that I have chosen side 1 to be 2 side 2 to be 1, side 3 to be 0, side 4 to be minus 1.

I could choose different values here any different value specially here for b 1 and b 4, but

just for simplicity sake I have kept that also as 2 and minus 1, but any other number

greater than 0 or any other number less than 0 will be good enough as values for the 3

sides it just as to meet criteria for this 4 partitions.

Now this is my set of test cases. On these set of test cases I am going to do go ahead and

apply all these coverage criteria.

(Refer Slide Time: 05:10)

And see suppose let me start with all combinations coverage; how many test case values

are there, how many different patricians are there? 4 of them; how many inputs are there?

3 of them; so as per our formula how many different all combinations criteria test cases

will be there?

There are 4 partitions that are based on relationship of length of a side being greater than

or equal to 0 or one. So, what will be then total number of test cases the total number of

test cases should be 64 right because for each of that I can choose any of 4 of them any

one of them any of them keep going right that is what the formula for all combinations

coverage criteria it told us it is difficult for me to enumerate all the 64 test cases, but I

have made an attempt to get you started. If you want do that on your own how do we go

about doing it keep a ordering there is no need of ordering it is not enforced by the

coverage criteria, but just to get your enumeration of this large number criteria 64

different cases right it helps to keep an ordering. So, what is what is the ordering that I

have here if you see I have began with side 1 being as 2 and now I varies side 2 and side

3. So, the first one says all 3 sides 1, 2 and 3 are all value 2.

Remember in this listing, I have kept side 1 to be 2. Now, I various side to side 3 what

are the values left out side 2 could be 2 side 3 could be one and side 2 could be 2 side 3

could be 0 and I move on I say side 2 could be 2 side 3 could be minus 1. So, between

these 4 cases what I have covered I have covered the option of side 1 side 2 being both 2

and side 3 ranging over the 4 different values 2 1 0 and minus 1. Now I change side 2 I

say side 1 is still 2 side 2, let us say becomes one now you vary sides 0 for all these

option. So, you start with 2 and now the next one in this list would which I have not

written would be 2 1 1, the next one after that would be 2 1 0. The next one after that

would be 2 1 minus 1 I keep going like this 4; 4-4 each. So, totally I will get 16 of them

beginning with side 2 as the length; length 2 as the length of side 1. Similarly let us a,

consider length one as the length of side 1 I do the same thing I park side 1 as length one

let us a 2 as length 2 and I vary side 3 first. So, here I make it side 3 2 side 3 one side 3 0

side 3 minus 1 and I move on.

I say side 1 is one side 2 is also one and I vary side 3. So, that will be 1 1 2 the next one

in this list will be 1 1 1. The next one would be 1 1 0 and s on. So, here again I will get

16 of them beginning with one as a length of side 1. Now I say length of side 1 is 0 and

again I do the same enumeration and I will get 16 more similarly length of side 1 is

minus 1 I do the same enumeration I get 16 more. So, if I basically what does is it park

one number in this table varies across the other numbers parks.

The next number in the table there is at across the number and I will do this exhaustively

that is what all combinations coverage criteria suppose to be. So, it result in 64 cases test

cases. Please remember one more fact here when I talk about test cases I am just giving

you the output a full test case you also have to give expected output I have not given

expected output I have just given the input the complete test case you have to give the

expected output also I prove I did not give the expected output I thought it is easier to

explain just how the inputs vary based on the partitions.

So, moving on we realize that just for a small example like type of a triangle doing input

space partitioning was effective enough this was good enough partitioning, but if u

consider all combination criteria you end up with too many test cases 64 of them is a

large number of test cases we would really not want so, many of so let us move on and

look at other coverage criteria.

(Refer Slide Time: 09:00)

So, now, I told you after that the most useful and important coverage criteria is pair wise

coverage. So, for same triangle type example let us workout the test case inputs for pair

wise coverage criteria how will they look as I told you as a recap there are 4 partitions

based on the relationship of length of the side being greater than or equal to 0 and less

than or equal to 0 or 1.

Now for pair wise coverage criteria if you apply the formula that we saw in the last

lecture how many different test cases should be there. There should be 16 different test

cases for pair wise coverage criteria and as I showed you in the last example for that

abstract partitioning there could be several different ways and which you could meet pair

wise coverage here I have listed one possibility for tests for achieving pair wise

coverage.

 how do you read this how do you understand it the first 4 triples 3 triples in the set

consider side 2 to be parked at number 2 and then it varies side length of sides one length

of sides 2 and 3. So, side 1 is parked at the number 2 here one side 1 is to side 1 is to

here in the second one side 1 is to here in the third one side 1 is to here again in the

fourth and then I vary sides 2 and 3 length.

So, here I made all 2 of them side 2 and 3 both to here I have made both one here I have

made both 0 and here I have made both minus 1 now what do I do at consider side 1 as 1.

So, the next 4 in the list of that side 1 if you notice is one here in this one in this one in

this one and in the eighth one and then I varies sides 2 and 3 I have made side 2 and 3 2

and 1 here 1 and 2 here 0 and minus 1 here minus 1 and 0 here.

This is just my choice you could do anything it does not matter right several different test

cases could be written to achieve pair wise coverage criteria the next 4 that is from the

ninth to the twelfth test case here park side 1 as 0 and then varies sides to 2 and 3 here

again the variations of sides 2 and 3 the numbers that you see a just my choice feel free

to substitute to the any other values for sides 2 and 3 that will equally well satisfied pair

wise coverage criteria and the last 13, 14, 15, and 16 side 1 is minus 1. And again sides 2

and 3 are varying as per one choice that I have given you here again you could feel free

to substitute values for sides 2 and 3 in any way that is satisfy pair wise coverage criteria.

(Refer Slide Time: 11:44)

So, for the triangle type program for input space partitioning given in this table with

these as the values for pair wise coverage criteria you get 60 sorry you get 16 different

test cases which I given here now we will move on last time I introduced you multiple

base choice coverage criteria, but I did not really give you an example of what multiple

base choice coverage criteria will be. So, I thought I will put that instead of doing those

single base coverage criteria for this lecture. So, here is how the example for the MBCC

criteria looks like there are 4 partitions again the that reference table what is side 3 sides

related to 0 and 1. So, what I do I have many choices for my base choice let us a consider

for my multiple base choice coverage criteria the number of base choices to be 2 and I

consider 2 and one to be base choices for side 1 this gives us 2 base tests right which will

be 2 for side 1 which is 2 here which is one here and side 2 and 3 would be 2 and 2 same.

Now, if you apply the formula for MBCC criteria at totally how many tests will I get

these 2 base tests that come from this above item here and then 6 more each

combination. So, totally I will get twenty tests and if you try to enumerate all this twenty

tests you will realize that 4 of them are redundant they come as reputations I have

removed the repetitions. I have directly given you the succinct reduced setup 16 different

test inputs for this that satisfied multiple base choice coverage criteria the 16 different

test inputs are like this these 2 are the 2 base choice test I have listed them here right up

in the front and how are these obtained if you try to study them. What would you do

here? Here again you will notice that side 2 is side 1 is 2 here and then I varied one and 2

0 2 minus 1 2 2 1 2 0 2 minus 1 now the next part I have put side 2 side 1 as 0 and then I

have consider 2 2 because these are my base choices right. So, I have park all and reduce

the rest.

Similarly, here is minus 1 2 two similarly I do 1 2 1 1 2 0 1 2 minus 1 1 2 2 1 0 2 and 1

minus 1 2. So, for 2 1 1 I consider all options for 0 and minus 1 I consider only 2

options. So, totally there are 16 different test cases that will satisfy multiple base choice

coverage criteria for the triangle type example I hope this small exercise helps you to

appreciate, how to do input space partitioning, and how to exhaustively list these test

cases now these will be our actual test cases to make them actual test cases what you

have to do is to able up and expected output values like for example, if I take this first 3

case what is the triangle that I am looking at 2 2 2 all 3 sides are equal. So, I am looking

at an equilateral triangle.

Now, what is the try type example suppose to give you as output for equilateral triangle it

was suppose to give a number put that as the expected output as the fourth topple that

corresponds to the expected output that is how you arrive at a complete test case

specification for each of this test cases.

(Refer Slide Time: 14:53)

Now, moving on before I wind up I would like to make you understand one simple point

like you know graph coverage criteria and logical coverage criteria for input space

partitioning you can get infeasible test requirements. For example, if you remember let

us revisit this find element method that we saw in the third lecture if you remember I

give you this specification of a find element method and because we are doing input

space partitioning.

Please remember we do not really need the code we just need to know what the method

is what its inputs are and what its output are. So, it is enough to just give that much this

find element method that we discussed 2 lectures ago took a list of objects as input and

then took an element as also an input and it basically is checks if this element is present

in the list; if it is present in list it written true otherwise it written false it written

exemption if the list or the element is null.

(Refer Slide Time: 15:51)

So, for this for example, let us I have done input space partitioning I have considered 2

different characteristics for partitioning my input one characteristic that I have

considered is the length and contents of the list how long is this list comes as input what

are its contents what are the elements the constituents of the list the second criteria that I

have considered is there a match it is a functionality based in input space criteria which

means is the element found in the list it directly deals functionality of the concerned

method.

So, with these 2 characteristics one is based on the length of the list and the kind of

elements in the list the second characteristic is based on whether the element is found in

the list or not here are some example partitions there are 4 partitions in the first case 3

partition in the second case. So, the 4 partition in the first case are the length of the list is

one it has only one element the length of the list is more than 1 the elements of the list

are an unsorted order arbitrary order the third partition says- the length of the list is more

than 1 the elements of the list are in sorted order the fourth partition says the length of

the list is more than 1.

All the elements in the list are identical they are replicas of each other this is just one

partition in based on this characteristic for the second characteristic which I have called

as match which basically test whether the element is present in the list or not there are 3

partitions the first partition says that element is not present in the list second partition it

says element is present in the list, but only once.

Third partition says the element is present in the list more than once this is some

partitions that I have come up with my goal is to be able to be test this method based on

these partition test cases obtained from these partitions now before moving on you will

realize that some combinations of partitions are not valid they are infeasible. For

example, if you see the combination a 1 and b 3 what is a 1 a one is this a is here, 1 is

here, a 1 is the list has exactly 1 element; what is b 3 b is here which is about the match 3

says element found more than once. Clearly, a 1 says- the list has exactly one element it

is a length one b 3 says the element is found more than once, these 2 cannot be coexist

because of the list is of length one how can the element be found more than once. So, it

is impossible to write a test case for the combination a 1 b 3. So, it is an infeasible

combination.

Similarly, a 4 and b 2 is also an infeasible combination what is a 4 say a and 4 it is says

the for length of list is greater than 1 all the elements in the list are identical this list

consisting of same elements copied several time what is b 2 say it says that the element is

found in the list and it is found exactly one. Clearly, if the length of the list is more than

1 and the element copies itself again and again in the list the element cannot be found

once; so this is another infeasible coverage criteria.

(Refer Slide Time: 19:13)

So, when we design partitions we have be careful if it is quit natural that we will get

infeasible coverage criteria we have to be able to rule them out. So, constrains capture

these infeasibility amongst partitions what are constrains constraints are relations

between partitions from different characteristics like we saw here right they cannot be a

relation when the element list has more than 1 element all identical and you say the

element is found only once it cannot be a relation at all. So, there are 2 kinds of

constrains one with says that a block from one characteristic cannot be combined with a

block from another characteristic the example that we saw in these slide belong to the

first category the second category which I have not shown in that example says that a

block from characteristic must be combined with the block one characteristic.

If you go back here for the same example for example, I could say when the list has

exactly one element then it must be combined with the element not found or with the

element found more than found exactly once it cannot be combined with an element

found more than once.

(Refer Slide Time: 20:29)

So, cannot and must these 2 are what the constraint say you must combine some

partitions with some partitions to make sense for test cases you should not combine some

partitions with certain other partitions to make sensible test cases that are actually

feasible. So, what do we do for all combinations coverage criteria pair wise and T wise

coverage criteria you really cannot do much you just have to drop the infeasible test

requirements why that is so because, if you remember these coverage criteria do not have

any intelligence they just blindly combine the partitions. And if partitions are infeasible

there is nothing you can do about it just drops them out, but if you have base choice

coverage criteria or multiple base choice coverage criteria then may be.

You need not to choose base choices as those partitions that result in too many infeasible

test requirement or test cases. So, you have better hold of infeasible test requirements by

choosing the choice of your base choice to handle or minimize the infeasible test

requirements appropriately. So, while partitioning the input and while writing test cases

based on input base partitioning. Please remember that sometimes you will get infeasible

test requirements and you might have to omit that.

So, next week we will move on to a completely different module and testing called

mutation testing and this will be the end of input space partitioning for you.

Thank you.

