
Software Testing
Prof. Meenakshi D’Souza

Department of Computer Science and Engineering
International Institute of Information Technology, Bangalore

Lecture - 33
Input Space Partitioning: Coverage Criteria

Hello again. Welcome to week 7, this is a fourth lecture I will try and finish test case

generation based on input space partitioning.

What did we look at till this week? We saw functional testing; I told you what are the

various kinds of functional testing; then I told you what is the basics of input space

partitioning. In the last lecture we have to find partitions I told you how the input space

could be partitioned in several different ways. One way we looked at was what was

called interface domain part based partitioning; the other one was functionality based

partitioning. So, we revisited the triangle type examples. And then we saw how each of

these work.

(Refer Slide Time: 00:52)

Today what will be seeing is what are the various coverage criteria that we can define

based on the partitions. Typically when I consider input domain there is one domain for

every kind of variable that is a part of the input. And there are several different inputs

each have their own types, each have their own domain and each of these input domains

can be portioned in several different ways based on what is the requirement that I am

considering and what is the requirement that I am trying verify.

For interface based input space partitioning we consider input separately as we saw in

the last lecture, for functionality based input space partitioning we partition the input

based on the concerned functionality of the program under test. So, now, what we will

see is that how do we combine all these various partitions of inputs. Is there a clever way

to combine, a better way to combine, an easier way to combine or a focused way to

combine these so that we can test that.

(Refer Slide Time: 01:50)

So, what we will be seeing today a various coverage criteria again define independent of

any examples, I will explain these coverage criteria using an abstract example. In the

next lecture we will take a concrete example which will be the triangle type program that

we saw and see how these various coverage criteria can be used to define functional test

cases for the triangle type program. So, the various coverage criteria that we will be

defining in this lecture I listed here.

We will work with six coverage criteria. First one will be all combinations, second one

will be each choice third one and fourth one will take pairs or will take 2 pills of lengths

t, the fourth and the fifth one. I mean the fifth and the sixth one will fix one coverage

criteria like a base choice, and then define cri criteria based on that. Between these

criteria almost all that pa ways of partitioning and input that we know off till date in test

case generation will be covered.

(Refer Slide Time: 02:54)

So, we begin with all combinations coverage abbreviated as ACoC; what is it do? It says

you take input domain you partition the input domain the of the various inputs, you

consider every combination from every partition. So, it is just this exhaustive testing

based on partitions of the input domain. So, all combinations of all the blocks of

partitions with respect to all the characteristics must be used to be able to test it for

AcoC.

Suppose, let us take for some piece of software, for some input we have the following 3

partitions. Let us not worry about what the input is just an abstract representation of the 3

partitions one partition partitions into 2 categories could do sets called A and B another

input is partitioned into 3 sets call it 1, 2, 3 the third input is partitioned into 2 sets call it

x and y right. So, there are 3 inputs first input is partition in 2 ways A and B second input

is partitioned in 3 ways 1 2 and 3, third input is partitioned in 2 ways again x and y what

is all combinations say it says take every partition with every other partition to test.

So, what I do for the first input I choose partition A and for the first input I choose

partition B here, then I keep the partition for the second and the third fixed to be one and

x 1 and x. So, here I vary the partitions for the first input from A to B, similarly for the

second input I consider partition one I fix partitions 1 and y for the second and third

input I again vary the partition one for the first input from A to B. Similarly, what I do

here? Now I vary the partitions for the second input I have made it changed it from one I

have made it 2 here I again have made it two. So, I consider A and B with partition 2 and

x.

So, between the middle column I cover the partitions of the second input, in the third

column I cover the partitions of the third input, in the first tuples here that I am running

my cursor down I cover the partitions of the first input. So, the first input has 2 partitions

A and B I have varied them thoroughly, second input has 3 partitions 1, 2 and 3 the

second tuples in each of these test cases cover that the third par input domain has 2

partitions x and y, the third input in each of these tuples cover that.

So, to be able to this is a test requirement for all combinations coverage criteria; to be

able to actually test it what do I have to do? I have to pick up one test case for each of

these petitions. So, I have to pick up one test case where the value is from value for the

first input is from A here one test case whether value of the second input is from one and

one test case whether value of the third input is from the partition x. Similarly for the

second tr I have to pick up one test case whether value of the first input is from

competition B the value of the second input if from partition one and value of the third

input is from partition x and so on.

So, now I you see how many different partitions can be there for all combinations

coverage criteria. Let us say each input is partitioned in B i ways each input is partitioned

in B i different ways and then there are n inputs, then the total number of partitions that I

am targeting in all combinations coverage criteria will be a product of all these values B

i. This capital pi that is written here means it is a product, it is a product over I is equal to

one to n B i where B i is the number of blocks that are there for each partition.

So, if you go back to this example the first input has 2 partitions number is 2 B i is 2 for

that, second input the B i which is b 2 is 3 for that for the third input the third partition B

3 is 2. So, the total number of test cases will be 2 into 3 into 2 that will be 12 and if you

see 12 test cases have been written here.

(Refer Slide Time: 07:03)

Now, what is ACoC? ACoC are all combinations coverage criteria is not intelligent at all,

it just tells you generate the partitions and just do an exhaustive testing with reference to

all partitions. It is somewhat like doing all combinations coverage that we differ logic

coverage criteria if you remember; obviously, if we generating the partitions to be able to

test them in a slightly intelligent way, we not generating the partitions to be able to test

them before all possible combinations.

So, ACoC is not considered a great test requirement coverage criteria and it really has no

advantages. We begin with it because we define we would like to understand it for

completeness sake and it is one of the value will coverage criteria whenever the

partitions are small maybe we could afford to do ACoC coverage criteria. And the thing

is it may not be necessary all the time. Now, how do we prevent ourselves from testing

all the possible combinations are there better choices?

(Refer Slide Time: 08:01)

Now, the next coverage criteria that we will see is what is called each choice coverage

abbreviated as ECC. ACoC says you take all combinations of all the partitions, each

choice coverage is the other extreme of ACoC. It says from each partition you pick up

only one value. So, what is each choice coverage say it says you pick up one value from

each block, block is the same as partition you pick a one value from each block for each

characteristic and use it as your tr.

So, for the same example that we had that the first one was partition was A B, second one

was 1 2 3, third one was x y each choice coverage will have only 3 test cases randomly

pick up let us say I have picked up A for the from the first partition, I picked up 1 from

the for second partition, and I picked up x from the third partition, in this case I pick up

B from the first partition, 2 from the second partition let us say Y from the third partition.

Now, I have more or less covered the 2 partitions A and B x and y, the only thing that I

have not yet covered is this partition 3 for partitioning the second input. So, I pick up that

for the third case and I can substitute either A or B for the first one or x or y for the

second one. So, I have chosen A 3 x. So, each choice coverage says pick one value from

each block that is all we have done here. So, is the program under test has n parameters

let say q one to q n, and each parameter has let say B i blocks or B i partitions then what

will the test suite for ECC will have? It will have at least max of B i values why is max if

you as you can clearly see here in the 3 partitions that we had for this example, only the

second 1 1 2 3 had cardinality three. So, to (Refer Time: 09:52) to that each choice thing

we have to pick up one once 2 once and 3 once. So, and that is the maximum number.

So, we need maximum of those test case values.

Like all combinations coverage criteria was like not a clever one, it included everything

ECC test the other approach it just says pick up anything randomly. So, it is actually a

very weak coverage criteria there is a lot of choice available on what you can pick up and

what you need not and the you might leave out some important combinations while

testing with ECC. So, ECC will not be effective for arbitrary choice of test values.

(Refer Slide Time: 10:33)

So, what do people do? People look for midway options between ECC and all

combinations coverage criteria one midway option is what is called pairwise coverage

what happens in pairwise coverage? In pairwise coverage a value from each block of

partition for each characteristic is combined with a value from every other block or

partition for the other characteristics. So, I take one pa block or partition corresponds to

one characteristic of an input domain epic value.

Now, I list out what an all what are the other partitions that I have left out at (Refer Time:

11:05) this value fix this value and then pairwise combine it with all other values. So, a

test suite that satisfies pairwise coverage, will have will pair each value with each other

value or it will have how many test cases if B i are there, B i is the cardinality of each

block or each partition, then it is clear that it will have max i is equal to 1 to and B i

square values right because I fix one B i and then I will let it vary over all the other

partitions then I fix the next one I will let it vary over all the partitions. So, it is B 1 into

this B 2 into this and goes on. So, it will be max of B i over the whole square.

(Refer Slide Time: 11:45)

So, for the same example we had this AB 1 2 3 and x y 3 different ways of partitioning,

pairwise coverage how many test will I need? I will need 16 different tests why so? It the

way they are arranged it will be clear to you what I have done here I have fixed a to be

the thing that I want to consider in the first partition, I let the second tuple vary I vary to

over the second partition 1 2 and 3, I vary it over the third partition x y. In this column

here I have fixed b is from the first partition I vary it over the tuple 1 2 and 3 and I have

vary it over the tuple x y for the third partition.

Now, between these I have not covered the way one varies with reference to the third

partition x y, the way 2 varies with reference to the third partition x y, the way 3 varies

with reference to the third partition x y that is what I have done here in the third column.

In the third column you take combinations with reference to the partitions 1 2 3 and x y

and choose pairs that let each of them vary. So, here I fix one let x and y vary, here I fix 2

let x and y vary, here I fix 3 let x and y vary again right.

So, if you count how many different test cases will be there, there will be so many

different test cases, but remember one thing we are doing too much of work here. In fact,

pairwise coverage what is let us do? It allows the same test case to cover more than one

unique pair of values in some sense the above combinations that we have listed out here

they can be combined in several ways for example, I could directly do A 1 x, in which

case I have done paired A with 1, and 1 with x. If I do A 2 x then I have paired A with 2

and I have paired 2 with x.

So, in the first case I do A with 1, 1 with x I get A 1 x, then I do A with 2, 2 with x I get A

2 x similarly A 3 x considers both the pairs a pairing of A with 3, and A pairing of 3 with

x. So, once I have done here I just need to pair A with y, and because I have already

paired A with 1 2 and 3. Once I have put a dash here in the last line when I pair A with y.

Read that dash as I can feel free to choose any of 1 2 or 3 for that, because I have already

paired A with each of them when I pair A with y, I can choose any one of 1 2 or 3.

Similarly, in the other case what I have done here we have paired B with 1 and y together

B with 2 and y, B with 3 and y what is left to be paired? B and x; while pairing B and x

because b is already paired with 1 2 and 3 I put a dash to indicate that I can choose any

of 1 2 or 3 while pairing B is that clear.

(Refer Slide Time: 14:43)

So, moving on pairwise considers only pairs or sets of 2; whenever we to sets of 2

usually we can also extended to a arbitrarily large number. So, pairwise coverage can be

extended to T wise coverage. So, instead of looking at a pair of values we require T

values. So, what is T wise coverage? It says a value from each block or partition for each

group of T characteristics must be combined. If the value for T is chosen to be the

number of partitions that is the entire number, then T becomes all combinations coverage

criteria.

If T is chosen to be one then t becomes each choice criteria if T is chosen to be 2 then T

becomes pairwise coverage criteria. A test suite that satisfies T wise coverage criteria as

an extension of pairwise coverage criteria will have max over i is equal to one to n B i to

the power of T values where B i is the same it is a cardinality for each of the partitions.

Again like all combinations coverage criteria T wise coverage criteria is considered to be

an expensive coverage criteria, and is usually considered to be almost close to exhaustive

testing or not necessary at all. So, people usually say that it is not why is to go beyond

pairwise coverage criteria, an empirical studies and software testing that involve input

space partitioning also prove that T wise coverage criteria is not a very useful coverage

criteria. But again we define it for the sake of completeness to indicate that whenever it

is necessary it is possible to choose the T of your own T could be 3 4 5 if we have lots of

partitions and then do t wise coverage criteria.

(Refer Slide Time: 16:26)

So, now what are the coverage criteria is that we have seen so far? We have seen four

different coverage criteria; we began with all combinations coverage criteria which was

like exhaustive testing with reference to combinations then we went on to the extreme

down side we said we will take each choice coverage criteria pick up one choice from

every partition, and then we did midway which was pairwise or T wise where the value

of T can be chosen by the user.

Now, all these coverage criteria put together have a bit of a disadvantage; what is the

disadvantage that they have? They consider the combinations blindly what do I mean by

blindly they do not really think what is to be useful what categories of combinations

would yield faults with the higher chance, maybe you would want to focus on a

particular set of input values, can I focus and look at only those input values and consider

the partitions with reference to the others, they do not look at all these they just look at

things blindly.

Now, we look at 2 more coverage criteria that focus on avoiding these blind

combinations of partitions; those 2 coverage criteria will depend on fixing one partition

as a base choice. So, the base choice is what we called as an important partition or an

important block for a partition of a particular input and we define coverage criteria on

that base choice. Now if you go back to lessons on logic coverage criteria base choice

coverage counterpart in logic coverage criteria would be what is called active clause

coverage. If you remember when we did logic coverage criteria we said I want to focus

on one particular clause and see how that clause influences the predicate and the clause

that I want to focus on will be called active clause similarly we had inactive clause and

we define coverage criteria that will let each clause in turn to be reactive clause and test

right.

Similarly, here when we look at partitions, they might be combinations or characteristics

of partitions that I want to focus on to see how it influences particular pieces software

under test. So, that block or partition that I want to focus on is called base choice

coverage, and we look at 2 different coverage criteria based on the base choice coverage.

(Refer Slide Time: 18:48)

So, the first one is plainly called base choice coverage what is it say? Say it is a base

choice that is a partition of my choice is chosen for each characteristic, and a base test is

formed by using the base choice for that characteristic.

Once you form the base test you keep it aside, subsequent test which means all the other

remaining tests how are chosen; they chosen by holding all, but one base choice constant

and using each non base choice in each other characteristic. So, just to explain it in a

different term what do we do in base choice the focus is I say I want to focus on one

partition one characteristic call it the base choice right. So, for example, the base choice

could be a one x take that as a tr keep it aside, then subsequent test how do I choose the

test that I want to add on to it I choose by holding all, but one base choice constant right

and choose each non base choice in the other characteristics for example, if you consider

the same partitions that we had which was a b 1 2 3 and x y let us assume that my base

choice is 1 A, 1 x this 3 tuple A 1 x. So, the base choice test is this.

Now, what do I do? Other test that I choose (Refer Time: 20:11) like this. So, what do I

do? I fix one and x instead of a I replace it with b right in the second case I fix A and x

instead of one I replace it with 2 and 3; and in the third case I fix A and 1 instead of x I

replace it with (Refer Time: 20:29) is that clear. So, what I do is I choose one class of

partitions call it the base choice keep it aside, then what I do is I fix I do not vary the

other base choices vary one base choice like for example, once I have pick a one x what

are these remaining four test how do I obtained them after picking A 1 x as my base

choice I park one and x, I vary A to B then in the second case I park A and x I vary one to

be 2 and 3 the other 2 blocks.

The third case I park A and 1 and I vary x to y. So, a test suite for base choice coverage

how will I calculate how many tests are needed? If you see it will have one base test

which like this which I have kept aside and then it will have one test for each remaining

block of each partition that is what I have done here. So, totally the number of tests

would be 1 plus summation over B i minus one where B i is the number of blocks in each

partition is that clear.

(Refer Slide Time: 21:36)

So, now moving on here we parked one base choice there is nothing in that prevents

from parking more than one partition as a base choice. If I park more than one partition

of the base choice then I have what is called multiple base choices. So, what is multiple

base choice do? Multiple base choices say that I have to pick up at least one maybe more

as base choice blocks for each characteristic; then what do I do after that base tests are

formed by using each base choice for each characteristic at least once.

So, that is like doing this A 1 x where I had only one base choice, here multiple base

choices are there. So, you form you base test by using each of those multiple base choice

all the characteristics after that what do I do? I do the same thing that I did for each base

choice coverage that is I hold all, but one base choice at any point in time constant and

use each non base choice in each other characteristic.

For example, if you assume m I base choices for each characteristic and the total of

capital M base tests, then multiple base choice coverage MBCC abbreviated as MBCC

requires how many tests this m is kept aside and then after that one I fix my M I can do B

i minus M i and sum it to overall (Refer Time: 22:54) is that clear.

(Refer Slide Time: 22:57)

So, this is how base choice and multiple base choice. So, what are the various coverage

criteria that we have seen till now? We have seen all these six input space partitioning

coverage criteria first one that we saw was all combinations coverage up here it was

exhaustive testing with reference to partitions and all the characteristics. So, in terms of

absorption relation that subsumes all other coverage criteria the next coverage criteria

that we saw was each choice coverage criteria, which was the weakest of all the coverage

criteria for input space partitioning because it just picks up one value from each of the

partitions right and the choice of the values is completely random. So, it is quite a weak

coverage criteria.

So, once I have pairwise coverage which means I park one value and let they others do

vary and I consider them pairwise then I that extends each choice coverage criteria by

definition and because T wise is any number assuming the T is any number greater than

2, T wise subsumes both pairwise and each choice coverage. In fact, as I told you t wise

coverage will be equal to all combinations coverage if you consider t to be the cardinality

of all combinations.

On the other side we do this base choice it is like active clause coverage criteria or logic,

I have fix one partition one characteristic as my base choice let the others vary in plain

base choice coverage this is only one choice for the base in multiple base choice

coverage there is more than one choice for the base. So, by definition multiple base

choice subsumes single base choice I do not use the word single here, and there are no

cross subsumptions here pairwise and base choice there is no relation t wise and base

choice there is no relation, similarly pairwise multiple base choice there is no relation

and all combinations coverage definitely, because it is exhaustive testing subsumes

multiple base choices and base choice coverage is that clear please.

So, what we will do in the next lecture is each of these coverage criteria I will take the

triangle type example, and I will walk you through how the tr for each of these coverage

criteria look like and how to write tests that satisfy test requirements for these coverage

criteria.

Thank you.

