
Software Testing
Prof. Meenakshi D’Souza

Department of Computer Science and Engineering
International Institute of Information Technology, Bangalore

Lecture - 32
Input Space Partitioning

Hello again. Welcome to the third lecture of week 3. What did we do last time? If you

remember I had introduced you to functional testing, how is functional testing done

popularly? And we looked at various techniques of functional testing in overview of

functional testing. In that one of the testing techniques was equivalence class

partitioning.

Today I had like to spend some time on that we call equivalence class partitioning as

input space partitioning, because it involves partitioning the input domain. So, it is

practically the same as equivalence class partitioning. So, I will introduce you to that

domain of equivalence class partitioning or input space partitioning in detail in today.

(Refer Slide Time: 00:49)

So, we begin by understanding; what are partitions of a set. So, I am given a set S, set S

could be a finite set an infinite set a countable finite set, we really do not worry about

what kind of a set it is I want to understand what the partitions of the set are. So, partition

of a set is a collection of subsets of the set S, here it is a collection of n subsets such that

each subset is disjoined pair wise with the other one that is they are mutually disjoined S

i intersection S j is empty, they do not have any elements in common and put together the

union of all the subsets you get back the entire set. So, that intuitively explains the word

partition also right.

Partition means I take a set S divided into various subsets, the various subsets that I

divided into should satisfy a few properties. The number of subsets that I divided into

should be finite in this case it is end each of these subsets should not have anything in

common with the any other subset that is they should be pair wise disjoint and put

together all the subsets together constitute the entire set S nothing is left out after

partitioning the set S.

So, in this small figure here the set S is partitioned into 4 partitions S 1, S 2, S 3 and S 4

if you see put together these 4 partitions constitute the entire set and they are pair wise

disjoined. So, this is small example we illustrate partitions work.

(Refer Slide Time: 02:21)

Now, how are we go into use partitions as far as testing is concerned. So, the set this set

S that I defined for a partition of S the set that we are going to partition is what is the

input domain. So, take a program, the program will have several inputs all the inputs

could be a various types the input domain as we dis discussed in the last lecture

constitutes all the types of the inputs that the program has along with the domain types as

declared within the program. It can be thought of is a Cartesian product or a cross

product of all the input types for example, if a program has a let us say two Boolean

inputs and let us say one integer input, then the input domain will be the set 0 1 for one

Boolean input cross product at with 0 1 for the second Boolean input, cross product with

the domain of integers based on the kind of computer the program is going to run on.

So, that is the set that we are going to take and partition input domain as I told you can

be several different sets typically one for each input, while doing portioning we may or

we may not consider all the inputs. Testers typically as sometimes decide to focus only

on certain inputs do not consider all the inputs for partitioning, but when they are doing

let say integration level testing they might consider all the inputs for partitioning.

So, it widely varies based on what is being tested and the testers choice. It is belief that

each partition of an input domain represents one property or in the testing (Refer Time:

03:50) we call it characteristic; it represents one characteristic of the input domain and

the program that is being tested will behave in exactly identical way for any input value

from each partition. So, I take as input domain partition it into several partitions and pick

one value to define my test case from each partition, and the belief is the program

behavior. In terms of the expected out to the program is expected to produce will be

exactly the same if I pickup any input from each partition, but inputs across partitions the

program is expected to behave differently because each partition represents a different

characteristic.

And there is an underlying equivalence relation; equivalence relations are binary

relations that satisfy certain properties we are not interested in defining or understanding

what they are, but equivalence here means that the behaviour of the program is identical

for any choice of input from a given partition. So, we say that the set of partitions are

equivalence classes induced by an equivalent.

(Refer Slide Time: 04:53)

So, how do we define partitions and characteristics? Each partition as I told you is based

on a characteristic or some property of input domains. So, here are some example

properties or characteristics you could be worried about a property which asks whether

the input is null or not, you could be worried let us say the input is a file, you would be

worried about whether the file is in sorted order or not and if it is in sorted order what is

the order of sorting is the file in sorted order is it in inverse sorted order or it is an

arbitrary order it is not sorted at all.

So, each characteristic allows a tester to define one partition; so will see a few examples

that explain how to define additional characteristics.

(Refer Slide Time: 05:29)

So, what are we looking at, we are looking at two properties as I told you if you

remember in the first slide I told you what do partitions satisfy; they have to be pair wise

disjoint and put together they have to constitute the entire set. So, when we look at

characteristic we are looking at characteristics the partitions induced by the

characteristics must cover the entire domain put together they must cover the entire input

domain, in testing terminology we call it the partitions are complete or completeness

property and the disjointness should still (Refer Time: 06:06) pair partitions must never

overlap, every pair of partitions should be disjoint with the other one.

So, for example, if I consider the characteristic that I showed you in this slide the order

of a file is it sorted is it inverse sorted or is it arbitrary, here is one example of an attempt

to define a characteristic and go ahead and look at partitions based on that characteristic.

So, I could say here are the 3 direct partitions, first partition could ask whether the file is

sorted in ascending order, second partition could be all files that are sorted in inverse

ascending or descending order, third partition could be all files that are not sorted that is

they are in arbitrary order.

But remember if this is the partitioning and we want to go ahead and check whether

these partitioning satisfy these properties or not if the partitions do not satisfy the

properties of completeness and disjoint we do not work with them for testing at all,

because testing without these two properties can be considered to be have errors it could

have lot of issues and problems. So, partitions have to be complete they have to be

disjoint.

So, here for this example partition is it complete is it just joint, the problem is it is not

disjoint why is it not disjoint it is not disjoint because suppose I consider small files that

is files that have length 0 or length 1 then the file will be sorted ascending, the file will

be sorted ascending and the file will can be thought of as not being sorted at all. So, such

files that are of length 0 or length 1 will belong to all the 3 partitions, which means the

disjointedness property is not satisfied.

So, what do we do what we usually do is we consider the same characteristic, but not in

exactly this way we tweak it a little bit and write it is likely differently. So, we write the

characteristic of the order of the file as follows. We ask we ask a question for the

characteristics. So, we ask is the file sorted in descending order or is the file sorted in

ascending order, the answer could be yes in which case it is true and the answer could be

no in which case it is false.

So, if I write the same thing like this you will observe that the disjointedness problem

goes away. How does it go away take a file of length 0 or length 1. So, it will be sorted in

ascending order. So, it belongs to the true part of this partition it will be sorted in

descending order. So, it will belong to the true part of the second partition, but the first

characteristic which is been sorted in ascending order induces two partitions is it true is it

false and a file of length 0 or 1 belongs to exactly one of these, and the second

characteristic which is the characteristic of being sorted in descending order induces two

more partitions true and false and a file of length 0 or 1 again belongs to exactly one of

these petitions.

So, we basically consider partitions the way intuition tells us by looking at properties by

looking at specifications, but what is what I am trying to tell you through this slide

(Refer Time: 09:21) you should be a little careful in way you write it if you write it

directly like this sorted ascending, sorted descending, sort it arbitrary then the partitions

may not be valid, but if you consider each one individually and consider it is being true

or false in being true or false then the partitions satisfy the disjointedness and

completeness property. So, they are valid (Refer Time: 09:44).

(Refer Slide Time: 09:45)

Will move on to considering the input domain and how to model the input domain. What

do we mean by modelling the input domain? Modelling the input domain means that I

have to be able to understand; which are the sets that constitute the input domain for my

consideration to be testing now. And how do I go ahead and partition identify

characteristics for these sets and partition them based on these characteristics typically

what do we do here are the steps that we undertake.

The first step that we do is we identify testable functions when is a function testable if

you remember in the last lecture I had shown you an example of knowing the context

right there was a large program p, that was calling a particular function right. So, that

function inside the program p was the function under test when we were doing input

space partitioning or equivalence partitioning for that functions. So, in general program

could have several different testable functions.

So, we now focus on which are that functions that we want to begin testing on. So, that

process is what is called indentifying testable function. So, I begin by identifying which

are the functions I want to test. So, those are what are called testable functions; the

second step is to identify all the parameters that can affect the behaviour of a testable

function. What like for example, if you remember in the previous lecture that particular

function f was called only when x was greater than 20 and that property was very

important for that I called it as test in the function in context that is what this step is

talking about. Once you indentify all the parameters these parameters put together

constitute the input domain of the function that is being tested.

Now, once I have the input domain I have to be able to model it. Now what do I do here?

I look at the properties of the function under test what do I want to test about this

function that is under test, what are the requirements that this function is suppose to

satisfy, what is it is functionality I look at all that that will help me to identify

characteristics, I take the characteristics and partition based on each characteristic. And

what do I do for test inputs I take one partition I told you any set of input values

representing that partition is good enough as a test input and each test input should

belong to exactly one block from each characteristic.

And please remember when I choose characteristics and partition based on the

characteristics, partitions must satisfy the property of being disjoint and after.

(Refer Slide Time: 12:19)

So, what are the two approaches of input domain modeling? There are two popular

approaches to do input domain modelling, one is called interface based approach and the

other one is called functionality based approach. So, we will spend a few minutes

understanding what each of these approaches are and two things to be observed well I

modelled the input domain I need to know the domain. What do I mean to mean by need

to know the domain I need to know what the program is going to do.

Let us say the program is a program that it is going to fly an aircraft I need to know a

little bit about the application domain of the program. Let us say the program is

programs that suppose to be in a banking sector then I need to know a little bit about the

application domain. So, I need domain knowledge and my partition should consider both

valid and invalid input because I am going to test the functionalities.

(Refer Slide Time: 13:11)

So, what we spend some time on now is, what are these two approaches to modelled

input domain modelling? So, the first approach is what is called. So, the first approach is

what is called interface based input domain modelling. So, here what it does is that there

are several characteristics of an input domain, they could be several parameters induced

for each of these characteristics interface based approach considers each characteristic of

parameter in isolation.

It considers it is what are the possible strengths of interface based approach? Interface

space approach is suppose to make it easier to identify the characteristics because we

really do not worry about how do they influence each other how one influences the other

and what are the weaknesses? The weaknesses are the problem is typically not all

information is available to the test engineer that will be reflected correctly in the

interface domain model when we consider each characteristic separately. So, there could

be a risk of the input domain models that I consider by models for input domain I mean

sets the sets that I consider for input domain could be incomplete and because I do not

consider how they depend on each other, I might miss some functionality.

What I am trying to do in interface based approach is that I am trying to analyze each

characteristic in isolation that might miss some functionality that comes as a part of

combination.

(Refer Slide Time: 14:32)

So, we will see examples that will help us to understand both the strengths and the

weaknesses in detail. The next approach is functionality based input domain modelling,

in this method characteristics are identified based on the overall functionality of a

system. So, let us say I have a program under test or a function under test I look at what

that program or the function is suppose to do, what is it is main functionality why is it

written why is it exist I look at those characteristics and then consider partitions of the

input domain based on characteristics that represent the functionality of the considered

program of function.

The strengths are that because I consider the main functionality this approach is belief to

yield better results than interface based approach. In fact, there are empirical studies I

will give you some references about empirical studies in input domain partitioning,

where this validated and since it is directly based on functionality your requirements test

case design can start very early in the development life cycle remember functionality

(Refer Time: 15:33) to requirements and requirements are the first thing that are baseline

in a typical development of software.

So, I test engineer can start designing test cases write the requirements face without

waiting for the program to be ready of course, for execute in this test cases you need the

program to be ready, but for designing the test cases I can start up front. What are the

weaknesses? The weaknesses are because it is directly based on functionality you need

domain knowledge, and identifying partitioning the input domain modelled can be non-

trivial.

So, this is a small example.

(Refer Slide Time: 16:01)

This is an example of a code which is suppose to take a list as an input along with an

element, if you remember we had looked at this code once before in one of the earlier

weeks and it suppose to find out whether this element is present in the list or not. If the

element is present in the list it will return true that is why it suppose to return a Boolean

value, if it is not present in the list it will return false, if the list itself or the element is

null then will throw in exception null pointer exception.

Please remember I have not given you the code here why have we not given as the full

code? We were not given the full code because as I told you in the last lecture we are our

focus is black box testing. In black box testing I do not design test cases based on the

code all the information that I need is which is the program you want me to test this is

the program of find element what are it is inputs it is inputs are list and the element to be

found in the list what is this program suppose to return?

It suppose to return a Boolean value true or false and when there are problems it suppose

to return in null pointer exception. This is all the information that I need to know I do not

have to know the code for the program because I am doing black box testing with this

information can I use inputs base partitioning to design test cases for the program that is

what we going to look at.

(Refer Slide Time: 17:22)

Now, let us look at the characteristics for interface based approach for this what do I

know? I know that this list two inputs list and an element two possible outputs true if the

element is in the list, false if the element is not found in the list and an exception. So,

simple interface based input domain partitioning will look like this, is the list null it will

ask and the answer will be true if it is null false if it is not null and then is the list empty

it will ask answer will be true answer will be false. You could go ahead and write a few

more things is the list is the element present in the list, but if when the moment when we

talk about is the element present in the list we are not considering interface based

approach please remember that interface based approach considers each parameter input

parameter in isolation for this program there are two inputs list and an element.

So, interface based approach directly considers the list and considers partitions of the

kind of list only it does not ask question about whether the second element input which

the element is it there in the list or not does not ask that question. When we do

functionality based partitioning we will consider that property into consideration that is

what we do here.

(Refer Slide Time: 18:41)

So, when I do functionality based approach for that list example if you look at the bottom

of this slide, we say is the element present in the list how many times is it present in the

list? The number of occurrences of element in the list if it is 0 which means the element

is not present in the list, If it is one then it is present in the list exactly ones if it is more

than one then it is present in the list more than ones. So, one characteristic based on

which I derive the partitions is the number of occurrences of elements in the list, it does

not occur which is the first one it occurs exactly ones which is the second one, it occurs

more than ones which is the third.

Now, if you see both the inputs to the program the element and the list are together

considered in functionality based approach. When we did interface based approach we

considered only the list separately. So, another characteristic that we could arrive this is

just as an example for functionality based approach is the following, we can ask does the

element occur first in the list. Not a very interesting characteristic because the program is

not worried about asking whether the element is occurring first in the list or not, but let

us say I am interested in this characteristic for some (Refer Time: 19:54) reason then I

can again write it I saying if it does occur first in the list, then one characteristic says true

if it does not occur first in the list the next characteristics is false.

So, how do I do functionality based approach, where do I get these things from? Usually

you know program preconditions and post conditions they are very rich sources to

understand functionality for example, if you look here right it is just a small little

comment that acts as preconditions on what the program is expected to do.

So, I do not really need the code of the program just by looking at this I am able to arrive

at characteristic right the other things that people usually look for testers usually look for

while writing characteristics, is to look at implicit and explicit relationships between

variables I will show you an example later in the lecture today about what this means, the

other functionality people look for is typically what is missing functionality. So, that they

can identify if the program is correctly handling missing functionality, and just to stress it

again to do all this unit extensive domain knowledge. Domain knowledge I mean the

domain of this in which the software is running.

So, in the next step is choosing partitions how do I choose the partitions as I told you the

number of partitions should not be too high if you choose a very fine grain characteristic

(Refer Slide Time: 21:16)

Then you will end up in too many partitions and then if you choose one test input for

each partition there will be too many test cases. Sometimes it might be needed to get

clarity if error is very deep in the program to get focus on the error, but in general it

involves an experienced balance between choosing the partitions wisely such that they

are not too large in number, but at the same time very effective in finding faults if.

(Refer Slide Time: 21:42)

How do I identify values within partitions typically partition should be such that all these

things are used to find the test input values, I should find a few valid values means there

should be in that list example there should be a nice long list and a case of element being

present in the list at least once and sometimes I might have to consider one partition in

isolation and partition it for the there could we needs for that sometimes we have to

identify values exactly at boundary.

If you remember in the last lecture I told you that once I do equivalence class

partitioning I can also do boundary value analysis that is what this is about and the some

partitions have to give me invalid values, because I need to know whether the program

has exception handling features for all these things and as I told you there must be a

balance between the number of partitions and effectiveness in finding test cases. And

there should not be any missing partitions I should get back the entire input domain that

is very important it should be complete.

And as I told you there should not be any overlapping partitions the partitions should

disjoint.

(Refer Slide Time: 22:49)

So, what will do for the rest of today's lecture is we will take one example and we will go

through what are the various ways in which we can partition the input domain for that

example. So, the example that I have chosen is the example that we did when we did

logic coverage criteria, because that was the most recent example that we visit it. So, I

thought it will be fresh in your mind. So, it is good to revisit that example. So, the

example that we did was the type of a triangle example abbreviated as TriTyp. If you

remember we had this program in the last week where we looked at this is TriTyp

program which to 3 sides of a triangle as input and determine what was the kind of

triangle was it in equilateral triangle, isosceles triangle or was it an invalid triangle and

so on.

So, here is an example of how an interface based partition for that will look like for

example, I could say that there are 3 sides, side 1, side 2, side 3 and I could consider the

relationship of the 3 sides to be with 0. So, I could say what is side one a side one greater

than 0 a side one and number length of side one a number equal to 0 is length of side one

a number less than 0 that could be one partition, the next partition could be the same

thing for side two is the length of side two a number greater than 0 equal to 0 less than 0,

the next partition could be related to the same thing for side 3 is the length of side 3

greater than 0, equal to 0 or less than 0.

So, suppose I consider partition q one for side one what do I do? I choose one value from

each partition which will result in 3 tests right one for side one greater than 0 like for

example, you could choose 7 or any number greater than 0 as the value, the second one

says side one is equal to 0 that is what I have chosen as a second value third one choose a

negative number side one less than 0. So, if you see here what do these two represent

side 1 equal to 0, side 1 minus 3 they represent 0 invalid values. So, what do they test

about the program? They test whether the program handles these invalid triangles

correctly so, that also satisfies this condition that I told you here that some partitions

should include few invalid values.

So, this is one partition which checks for greater than 0 equal to 0 less than 0.

(Refer Slide Time: 25:05)

Sometimes you might want to refine it into you can doing 4 partitions, you might want to

do greater than 0, equal to 0, separately maybe equal to one and less than 0 just a choice

just to give you an illustration of an alternative option to do partition. In this case what

will happen there will be 4 test inputs one for a side one greater than 0, 1 for side one

equal to 0, 1 for side one equal to 1 and one for side one being a negative number

similarly if a side 2 similarly if a side 3.

Now, another (Refer Time: 25:34) point that I would like to like you all to understand

and observe here is that if you remember the program TriTyp in input to the program

were 3 integers. If you remember all the 3 in sides sorry input to the program with 3

sides and all the 3 sides what was their data time? They were all integers, these partitions

are valid provided the 3 sides are integers suppose I will make the 3 slides sides of the

triangle is floating point numbers, then this way of doing partitioning is not valid. Why is

it not valid because it will not be complete if you see these 4 partitions the if they are

floating point number then between these 4 partitions none of the partitions test for this

length of a side of a triangle being a number between 0 and 1.

Let us say the length of a side of a triangle is 0.7, it does not test for that it does not

belong to any of these petitions. So, it does not satisfy the completeness criteria, but for

that program that we had our type of the 3 sides was integers when I consider integers

these petitions are valid.

(Refer Slide Time: 26:54)

So, you have to be very careful in determining whether partition is valid or not based on

the type of the domain one partition could be valid for one domain type and could be

invalid for another two main type the same partition could be invalid for another domain

type. So, when I do functionality based partitioning of TriTyp, I do not directly look at

inputs in isolation I start looking at the functionality of the program. What was the

program TriTyp suppose to do? It was suppose to determine the type of a triangle what

were the 4 types of outputs that it was suppose to produce? It was suppose to produce

numbers as 0 1 2 3 to tell you what the kind of triangle it was, it was suppose to tell you

whether the triangle was scalene or isosceles or equilateral or invalid.

So, functionality based approach will consider the functionality of a program, what is the

main functionality (Refer Time: 27:33) program and try to come up with the

characteristic based on the functionality. In the case of type of a triangle the functionality

was the type of the triangle itself. So, here is one partitioning. So, I say my criteria for

partitioning is the classification for the type of a triangle and then there are 4 partitions

triangle the 3 sides are such that the triangle is scalene, the 3 sides are such that the

triangle is isosceles, the 3 sides are such that the triangle is equilateral, and one of the

sides or maybe more than one of the sides are such that the triangle is not valid triangle.

So, suppose I consider a portioning this way before we move on in design test cases as I

told you the first thing to understand is our partitions complete our partitions disjoint you

will realize that these partitions are not disjoints. If you think for a minute can you tell

me why these partitions are not disjoint what is the problem. The problem is if you see

every equilateral triangle is also an isosceles triangle, what is an equilateral triangle it

means all the 3 sides are equal, what is isosceles triangle say any two sides are equal. So,

when all the 3 sides are equal any two sides are equal. So, these partitions suppose I give

a triangle that is equilateral it will belong to b 3, partition and it will belong to b 2

partitions. So, it does not satisfy the property of disjointedness.

So, how do I overcome this small issue? The tweak or the correction that I have to do for

the partitions is very simple.

(Refer Slide Time: 28:53)

So, I just rewrite the partitions to mean that it is scalene, it is a isoceles, but not

equilateral it is equilateral and it is an invalid triangle. What will this achieve this will

make sure that here for b 2 I do get a triangle that is only isosceles, it will separate

equilateral triangles that also have the scope for being isosceles. So, it says isosceles

triangle not equilateral, this way I made sure that the partitions b 2 and b 3 which were

overlapping here become disjoint here.

(Refer Slide Time: 29:30)

Now, I am ready to give test inputs to get to start testing the program the test inputs that I

could give are one set of test cases that will test with other triangle scalene and for

example, 4 5 6 this is good enough to test for triangle scalene it will be this is another set

of test cases with two sides being equal to test if a triangle is isosceles, but not

equilateral. The third set of test cases with all 3 sides equal have given 3 3 3 give any

values all of them need to be the same 4 4 4, 5 5 5 anything is alright this test for

equilateral triangles this test for not a valid triangle is this clear.

So, if you see throughout what we have done we looked purely at the input looked at

what input values could be given and how they could be partition, based on just the input

values which is interface based approach which was discussed here or based on the

overall functionality which is the functionality based approach which was discussed

here.

(Refer Slide Time: 30:28)

So, to design test cases for input domain partitioning I do not really need the program

code, I need knowledge about the inputs and I need to know what the functionality of the

program is and I could partition the input domain in several different ways. What will do

in the next lecture is we look at once I have come up with the partitions how do I design

test cases, what are the various coverage criteria to design test cases do I pick one value

from each partition, do I pick one value from each partition such that the every other

value from other partition is covered, do I pick two values from each partition is there

one partition that I have to focus on all these things. We will understand in the next

lecture.

Thank you.

