
Software Testing
Prof. Meenakshi D’Souza

Department of Computer Science and Engineering
International Institute of Information Technology, Bangalore

Lecture - 31
Functional Testing

Hello all. This is week 7, second lecture. Last time we saw how to solve assignment 6.

Now I am going to begin a completely new module in this course.

So, far what did we see? We saw testing based on graphs and how it applies for source

code for design for requirements, then we saw testing based on logical predicates, how it

applies to source code for specifications and for finite state machines. Now we are

moving into what is called popularly called functional testing or black box testing. And

we will see this technique called input space partitioning coverage criteria based on input

space partitioning and look at an example of how to use these things.

 (Refer Slide Time: 01:01)

So, when we talking about functional testing we are basically within the domain of black

box testing. So, in the first week if you remember I had told you that there is this popular

categorization and testing white box and black box so far the kind of things that we

looked at graphs and logic, whenever we apply it to code we were doing white box

testing because we were talking about coverage criteria which exercised certain parts of

the code and whenever we were applying it to specifications we were doing what is

called black box testing.

So, black box testing involves testing of the code or a design without knowing about it is

internals you do not know the language in which it is written, you do not know it is

structure, you do not know how many loops it has where they are you purely look at

inputs and outputs in the code and test it based purely on the expected relationship

between the inputs and the outputs. Black box testing typically deals with inputs and

outputs, I could apply it to code, but without looking at the structure of the code I could

apply it to design without looking at the internals of the design, I could apply to

requirements by directly it considering what the requirements state about the inputs and

outputs.

So, this week we will fully between what is called black box testing, even when we

apply it to code we will purely focus only on the inputs that are there in the code not

really look at the structure of the code at all and see how to design test cases based only

on the inputs. Of course, if we apply to requirements then there is no codes and no need

to see any structure and similarly when we apply to design we will again focus only on

the inputs and outputs.

So, we could apply to any software artifact, but remember that we are not going to

design test cases based on the internal structure of the artifact, we are going to design test

cases purely by looking at the inputs and the outputs of the artifact and what the artifact

which is code or design or requirements we suppose to do while transforming the inputs

to the outputs.

(Refer Slide Time: 03:02)

So, the black box testing if you refer to some other books popularly specially the old

books, they will popularly call it as what is called functional testing they practically

mean the same. In fact, the term functional testing was introduced by this person called

Howden he was working for his statistics research institute in the late 1970s.

So, the idea is basically this I have a program or a piece of code call it P, I will view it as

a function that transforms the input that the program takes to produce outputs. So, this is

a program that takes some inputs and produces outputs, when I functional test the

program I will view the program as a function that takes inputs transforms the inputs to

produce outputs.

So, given a vector of inputs xi when I say a vector of input xi the program could have 3

inputs right like for example, it could have 2 integers and then it could have let us say a

Boolean number. Another piece of program could have an array of numbers and let us

say an index to search for or index whose value is to be return. So, different programs

could have different inputs I put all the inputs of a program together and call it as a

vector xi. So, that is like a set of all inputs of the program that are at any given point in

time, that the program is suppose to process and produce outputs.

Outputs again a given program can produce more than 1 output. So, I put all the outputs

together and consider it as a vector yi. So, what is a program? Program P can be thought

of as a function that given xi returns yi for example, suppose I have a program the sorts

numbers then the input xi for the program is an array of numbers, and the output yi is the

array, but in the sorted order. So, for example, suppose another example let us take a

program which is basically a compiler let us say a c compiler, c compiler is a program

right it could be a fairly large program, but it still a program it is a piece of code what is

the input to a program like a c compiler? It is another program itself.

So, I can still represent it as a fairly large input vector to a program and then what is the

output to this program? The output to this program is the compiled code or in the other

words the object code. So, the input xi is another program and the output is the compiled

or the object code.

(Refer Slide Time: 05:33)

So, when I do functional testing I consider every program as a function that takes inputs

and produces outputs. So, what is functional testing what are the important steps that

people do in functional testing they have to identify, remember I told you when we do

functional testing we focus on inputs and outputs we do not really look at the insights of

a piece of program or a code.

Now, I have to understand the inputs in detail first I have to understand what and all

constitutes the input, what is the domain of each constituent in the input. So, I have to

identify the domain of each input. Similarly I need to know what and all constitutes the

output what is the domain or the type of each entity in the output. So, that is the first

thing I know and understand after I do that I select values from the domain of each input,

and I select what will be the expected output for these values selected.

Several common input domains like integer let us say typed input or a floating point

typed input let us say or an array of integers I have practically or fairly large number of

values potentially infinite number of values. So, when I test for a program for the input

output relationship, I cannot exhaustively test a program for all these values I the best

that I can do is to select a sub set of values from the input output space. This whole week

what we will be seeing is; what are the various ways in which we can select to test the

program for it is input output relationship.

So, this selection or the combination of selections is what this week is going to focus on.

Once we select values we consider combinations of the specific values from different

input domains to test design test cases and we consider input values such that this

combination that we consider for each different combination that we consider, the

program we expect produces different-different outputs.

Let us say you consider the same combination again and again for which the program

produces the same output again and again then you would not been effective in testing

the program ideally the combinations that you select should be different in the sense that

they should produce different behavior in the program, hopefully resulting in different

outputs. So, that is what we will be focus on.

(Refer Slide Time: 07:52)

How to select and how to write combinations before I move on I would like to tell you

that sometimes it may not be possible to purely focus on the inputs and outputs

sometimes you might have to know a little bit about the insights of a program. Why is

that so? Here is an example this is popularly called doing functional testing in the context

of something else. So, functional testing I told you as a black box testing.

So, we expect not to look at the insights of a program or a code, but sometimes we need

to know a little bit; we need to know something like a minimal contextual information to

be able to get relevant values for input and output I will illustrate this through an

example for you consider a program P, I have not really written the code for P, but

assume that this is the space of program P this is where the code of P resides. Somewhere

in it is code P uses a function f there is an input x to the program P and this x within P is

passed on to call the function f whenever x is greater than or equal to 20.

So, the program P uses the input x program P also has an internal function or a method

called f, this program P uses the input x as input to the function f to call the function f

whenever this condition is true that is whenever x is greater than or equal to 20. Now let

us say I want to be able to do functional testing for this program; which means what I

really do not know this much that the program has a function f that it is going to call f

with x when x is greater than or equal to 20, why I do not know about this because I am

doing black box testing and I am not suppose to, all that I know is x is an input to the

program P.

So, I make an attempt to design select values for x such that I can test how the program P

transforms the input x into corresponding output.

(Refer Slide Time: 09:48)

Suppose x is a floating point variable and as I told you we are not aware of the presence

of this predicate. We are not supposed to be aware, because we are doing black box test.

So, we are likely to test for the following input values of x we will take x to be let us say

one positive number x to be one negative number and maybe we will test how the

program behaves when x is 0.

I have written k as a number with a large magnitude because we are unlikely to test it for

small magnitudes because it is a floating point number you if you choose 0 then you

would choose a large number and you would choose a large positive and a large negative

number. Now if you see these 3 choices that we have selected for input x plus k minus k,

0 which of these 3 choices will actually make the program call the function f it will only

this plus k because for the other 2 choices x is minus k and x is 0 this predicate x greater

than or equal to 20 which makes the program call the function f that predicate becomes

false.

So, only for one choice I would have call this, now suppose I want to be able to focus on

functional testing of the function f, I have not really exercised f except for only once. So,

suppose I know the context in which f is called context meaning this predicate there x

greater than or equal to 20, then I will be in little more effective in designing my test case

inputs to test the function f. If I had known the context I would have designed test cases

that look like this I would say x is k, where k is a number much larger than 20 and I

would say x is y where y is a value between 20 and k and then I would call it for x equal

is to 20.

In all the 3 cases the function is called in this case at 20 and then in this case for a

number larger than 20 and then that is in middle case for a number in between 20 and

some large number that is for a number close enough to 20. So, what I am trying to tell

you through this slides is that even though we are focusing on black box testing, where

we do not look at the internals of a program that looks like this, but suppose we want to

do black box testing or functional testing focusing on a particular function f of the

program; we might have to look at little bit inside the program just to know the context

in which that function is invoked or called knowing the context will help us design select

input values, such that we can exercise the calling of the function f itself correctly to be

able to do black box testing for that function.

We still need not know the entire code for this program, it is enough to know the context

in which this function is called for us to be able to help us to deign good test cases.

(Refer Slide Time: 12:33)

What are the various types of functional testing that you will find in the testing literature

here is a broad classification, in several books you will find this term very popular term

called equivalence class partitioning or e c P or e c just e c then there is a relate technique

called boundary value analysis abbreviated as BVA, then you would have heard of the

term pair wise testing.

In fact, there is a very popular technique which was introduced by an Indian statistician

mister rao called orthogonal arrays then you would have heard of the term decision

tables and another usually popular way of doing functional testing is what is called

random testing. What we will be focusing for a lot of this week is on some of these

techniques especially on equivalence class partitioning I will call it input space

portioning because that is what the best book by Amman and Offutt calls it as boundary

value analysis. We will see today pair wise testing we will see as one of the coverage

criteria when we do equivalence class partitioning or input space partitioning. I will tell

you what decision tables are today I will also tell you what random testing is today we

will do look at random testing in little more detail towards the end of the course when we

do symbolic execution.

So, for the rest of this lecture we will look at these techniques one at a time, and I will

tell you through examples how to use these techniques. Equivalence class partitioning is

one what we begin with.

(Refer Slide Time: 14:01)

So, equivalence class partitioning basically assumes that the input domain that I want to

test is fairly large let us say the input is a floating point number the input is an integer

since it is practically impossible to test the program for all values of the inputs. So, I

want to be able to partition the set of inputs such that the number of partitions is finite,

and each such partition is known as an equivalence class. The word equivalence class

comes because as for as the program is concerned it is expected to behave similarly for

each element that chosen from the partition.

So, we will make this very precise and clear I will define it to you what a partition is and

how to select inputs from partitions, what are the properties that partitions should satisfy

everything in the next lecture, but for now equivalence class portioning means you take

an input domain it is a fairly large set, I partition the input domain into several sub sets a

finite number of them such that I pick one input value from each partition. And the inputs

have the property that from each partition if I pick one input value then the program

when it runs on that randomly picked input will produce the same output as any other

input picked from the same partition.

So, as I told you we will do equivalence class partitioning as input space partitioning in

detail in the next lecture.

(Refer Slide Time: 15:32)

So, here is a small example that motivates equivalence class partitioning. So, remember I

am doing black box testing. So, I do not look at the program at all, I will just look at the

requirements or what the program is suppose to do. So, here is some program that to

calculates income tax for some country. So, here are the rules based on which the

program is suppose to calculate the income tax. To calculate income tax the program

considers an input called adjusted gross income abbreviated as AGI and it says if the

adjusted gross income is between 1 and 29500 then the amount of tax that is payable by

that person is 22 percent of the AGI.

If the AGI is between 29501 that is it exceeds this 29500, but is within 58500 then the

amount of tax to be paid by that individual is 27 percent of the AGI if the AGI exceeds

58500 dollars, that is it is at least 58500 and 1. And if it is less than 1 billion which is a

lot of money then the tax to be paid by the individual is only 30 percent of the AGI. So,

these are some rules it says based on these rules you take the input as AGI the annual

gross income and apply these rules to calculate the amount of tax to be paid by an

individual.

So, that is a program that is as it and we are doing black box testing for that program. So,

we do not get to see the program, we do not get to look at, we have to still be able to

design test cases purely based on this information. What is the information that is given

in the slide the program has one input AGI, the program is suppose to produce one output

which is the amount of tax to be paid here are the rules if AGI is between 1 and 29500

tax is 22 percent. If AGI is between 29501 and 58500 tax is so much. If AGI is above

58501 and less than 1 billion then the tax is so much. We know this much so, we know

inputs, we know outputs, and we know how the program is expected to compute the

output given input.

Now, if you see this input there could be so many individuals who have different-

different AGIs, I clearly cannot test the program by giving each individual number as

annual gross income and test and it is not necessary also. Why is not necessary because if

you see the requirements here it clearly states that if the annual gross income is between

one dollars and 29500 dollar, which means for any value between these 2 numbers the

tax is always 22 percent of that value. So, it is enough to pick up one value from this

number to be able to test it right.

And then, similarly it is enough to take up one value between the second range to test it

is enough to pick up one value between the third range to test it, and we also typically

pick up values that are outside the range.

(Refer Slide Time: 18:47)

So, I will give a number less than 1 dollars and I will give one number greater than 1

billion which constitute the boundary of these equivalence class partition. So, totally we

get 5 partitions one partition is for between one annual gross income between one and

29500 it is a valid input, another partition is for the annual gross income being less than

1 it is an invalid input, because annual gross income is a negative number let us say or let

us say 0.

The third partition which is again valid is annual gross income it is between 29501 and

58500, the forth partition which is another valid input it is annual gross income is

between 58501 and 100 billion and this one final outside the value or invalid input which

is annual gross income will greater than 1 billion may be that person does not have to

pay any tax. So, 5 test cases one for this value one for this range, one for this range, one

for this range and one for this range is enough if fully test the program for correct

functional.

(Refer Slide Time: 19:41)

Moving on there is another popular technique in functional testing called boundary value

analysis abbreviated as BVA. What is BVA about it is about selecting test inputs nearer

the boundary of a data domain, so that the data within and outside the boundary is well

taken care of. For example, if you go back to the same example. What constitutes

boundaries? Boundaries are what if the AGI is one rupee what if one dollar sorry what if

the AGI is exactly 29500 dollars, what if the AGI is let us say 29500.5 dollars it is still

more than this, but it is less than this right.

So, boundaries values constitute the boundaries of the various partitions and the idea is to

be able to use the values at the boundaries to be able to produce test inputs, because

usually program is makes small mistakes there or people who writes specification makes

small mistakes there they would not have taken care of the boundary values correctly

they would not have put the less than or equal to when they had to put it they would may

be put less than instead of less than or equal to. So, it is useful to pick up input values

exactly at and around the boundary to be able to functional test a program and boundary

value analysis is about doing that.

Once equivalence class partitioning partitions the input we choose boundary values. So,

that they are on or around the boundaries of the partition to generate test inputs for BVA.

Why because we believes that typically programmers make mistake at the boundaries

and those errors are easier to catch and the test inputs design for BVA will help us to

catch those errors. So, how do you do boundary value analysis here are the guidelines,

the equivalence class partitioning specifies a range like we saw here right here is a range

first range what we one and 29500 second range says less than 1 and so on.

(Refer Slide Time: 21:46)

So, you take that range and you construct test cases by considering the boundary point of

the range, and the points just beyond the boundary of the range and the if the partition

specifies number of values we will see examples of this as we move on you construct test

cases for the minimum value and for the maximum value as you mean that the values are

order.

If the partition specifies an ordered set then you consider the first and the last element of

the value, this is how you pick up test case input values while you are doing boundary

value analysis.

(Refer Slide Time: 22:13)

So, we will take the same annual gross income and tax computing based on the annual

gross income example if you remember we had defined 5 partitions here is it these 5

partitions. What will BVA do this was the first partition right on less than or equal to AGI

less than or equal to 29500 boundary value analysis will pickup values around the

boundary. So, let us take the left boundary here left boundary is one less than or equal to.

So, the values around the left boundary will be 0 1 which is at the boundary minus 1

which is before the boundary 1.5 which is just after the left boundary similarly for the

right boundary what we do is we take 29500 and 99.5 which is just below the right

boundary 29500 at the boundary 29500.5; why did I choose this 0.5 mainly because if

you see the next one assumes that it is 29501. So, let us say the annual gross income is a

floating point number then the program should be well take up to handle 29500.5 may be

you should over approximated it to be 29500 and one and then calculate tax, but the

programmer should have taken care of it.

So, writing a test case like this will help to find an error if the program is not taking care

of it. Now moving on for the second partition which was this annual gross income less

than 1 boundary value analysis will be 0 1 minus 1 and something like minus 100 billion

which is like a fairly large negative number minus 100 billion if you do not like it you

put it as minus 3 minus 7 it will be the same as for as the program behavior is cons.

Again for the third partition you take this which is a third partition that was given in the

equivalence class partitioning right boundary values 29500, 29500.5, 29500 and one

which test for the left boundary for the right boundary you have 58499 58500 58500.5

58500 and one this tested for the right boundary.

Similarly, if a next partition right values around the boundary the last partition right

values around the boundary here the last value that I have written here I had given some

fairly large number just to make sure that the program handles some corner cases, but if

you do not like this fairly large number you could give something like 100 and 5 billion

or something like that and stop it. So, is it clear?

Please, how BVA works? BVA assumes that equivalence class partitioning or input space

partitioning has been done on the program and designs test cases by picking up input

values on and around the boundary of each partition.

(Refer Slide Time: 24:51)

The next popular functional testing techniques that you would have heard of it is one of

the most popular functional testing techniques that I know of is what is called decision

tables, why do decision tables come into picture they come into picture for the following

reason a technique like equivalence class partitioning considers each input separately, it

cannot handle a combination of inputs. In fact, in the example that we saw which

involved annual gross income there is exactly one input which is the annual gross

income.

So, suppose there was an annual gross income and age and the tax rule says that if the

annual gross income is so much and the age is above 60, let us say the person is a senior

citizen then the tax is slightly less equivalence class partitioning may not be able to

handle it for that you need what is called decision tables.

(Refer Slide Time: 25:48)

Decision tables can handle multiple inputs by considering different combinations of

equivalence classes. So, how does a decision table look like this is how it will look like.

There will be a fairly large table what do each of these things mean we will see. So, what

are the entities that are there in the decision table there are something called conditions,

then there are things called values. Values are typically yes abbreviated as y n

abbreviated as no I mean sorry no abbreviated as n, and this dash rewrite as do not care.

What do I mean by do not care? Do not care means I it is the value is immaterial of

whether it is yes or no and these rules are basically populated with yes no and do not care

symbols for each condition.

So, it is says condition one should be satisfied that is what this yes mean in rule one,

condition 2 a condition one should be satisfied in rule 2 condition 2 should not need not

be satisfied in rule 3. So, that is why it is written as a no. So, these rules basically say for

each of the conditions whether each condition is needed not needed or I do not care in

this particular example I have just filled it up with yeses and nos I have not given do not

cares, but you can write do not cares also. Then the later half of the decision table has

what a called effects. Let us say here there are 3 effects E 1 E 2 E 3 and then there is a

checksum which tells you what happens to each of these effects.

(Refer Slide Time: 27:19)

So, how do I read it? I read these as do it in order of priority means if we will see an

example. So, what is a decision table have it has a set of conditions and a set of effects

which are arranged in a column like this the first column each condition has possible

values yes no do not care and the second column that is what is written here, for each

combination of the 3 conditions there are rules in this case there are 8 rules it need not be

8 rules all the time rules are flexible, you can write as many as you want to be able to

exhaustibly capture. The conditions on the inputs each rule can be a yes no or a do not

care and with each rule there are a set of effects.

Like for example, with rule one which are the 2 effects that are associated with rule one

effect one E 1 and effect 3 E 3, effect 2 is left blank which means effect 2 does not matter

for rule one and what is this order say 2 and 1? It is says if this is true which means all

the 3 conditions are satisfied in which case rule one applies effect one occurs first and

then effect 2 occurs. So, for each effect there is a sequence number which is what is this

part effect sequence number which specifies the order in which the effect should be

carried out if the associated sets of conditions are satisfied. For example, if c one and C 2

are both yes and C 3 is a no then E 2 should be followed by E 3.

So, let us see if C 1 and C 2 are both yes which is rule 2 and C 3 is a no, then E 3 is

followed by E 2 is it clear. So, what is checksum? Checksum is used to the standard use

of checksum is to verify if the combination of the values is correct. So, this is how a

decision table looks like.

(Refer Slide Time: 29:04)

So, we will see a small example. So, let us say there is a loan management system and

that calculates what is the amount of loan taken what is the amount to be repaid and what

are the what is the term is to be paid over 3 years, over 5 years over 15 years what is it

rates. So, there are 2 kinds of inputs repayment amount is one input term of a loan which

is a number of years with which we repay the loan is another input. So, the condition

says as the repayment amount been mentioned yes or no similarly as the term of the loan

been mentioned yes or no and what is the effect if the repayment amount has been

mentioned and the term of loan has been mentioned then you can process the loan

amount and you can process the term. But let say if the repayment amount has been

mentioned and the term of loan is not been mentioned that it is a no then you can only

process the loan amount you cannot process the term.

Similarly if the amount is not mentioned, but the term has been mentioned then you

cannot process the loan amount you can only process the term. If both have not been

mentioned that it is a no then you have to give an error message. So, this is how you

write requirements for a design decision table, based on these requirements you write test

cases. So, if these rules are true in this case you write a test case that will do processing

now by taking input as repayment amount taking input as the term of loan and produce

the expected output.

(Refer Slide Time: 30:47)

The second column it will take input only as the repayment amount, the third column it

will take input only as the term of processing in forth column it will it just handles error

handling is the program done exception handling or error handling well that is what the

forth case will test in the decision table. I hope decision tables are clear moving on we

will bind up this module with brief look at random testing what is the word random say?

Random says pick a random input and test you might wonder why is this useful. In fact,

it turns out to be a very popular testing technique. There is a popular class of tools called

monkey runners which is like imagine monkey producing inputs to a program.

So, this tool will produce inputs that are as random as that these are very useful when

you test programs if it handled exceptions and all kinds of error conditions very well. So,

random testing basically it selects a test input randomly from the input domain and gives

it to a program, but they also see how do we use randomly selected inputs to know if a

program has an error, here is an example that illustrates that consider a program that

computes this square root of a number I have written it like this sqrt of x, where x is an

integer let us say x takes values from 10 to 10 power 8 with equal likelihood, and we say

that the result this program produces must be accurate up to within this number 2 into 10

power minus 4.

So, to test this program we can generate a uniformly distributed pseudorandom input let

us say t, and let us say the program a produces output z which is supposed to be this

square root of t. So, for each such t what do we do we take z and we take z square. So, if

z is actually the square root of t then z square should be close enough to t. In fact, it

should be within this likely permissible range 2 into 10 power minus 4. If z squared fails

to be within this range of t then the program has an error so that must be fixed and then

this test can be repeat. So, this is how random testing happens. So, to random testing may

or may not be effective all the time, later in the course we will see one very effective way

of o coming random testing called symbolic test.

So, this modules goal was to give you an overview of the various functional testing

techniques from next class onwards I will focus only on equivalence class partitioning or

called input space partitioning. We will see how to define partitions of a set how to

design input space partitions for various kinds of programs, and what are the coverage

criteria based on these partitions.

Thank you.

