
Software Testing
Prof. Meenakshi D’Souza

Department of Computer Science and Engineering
International Institute of Information Technology, Bangalore

Lecture - 30
Assignment Solving

Hello all welcome to week 7. The first thing that we will do this week I will help you to

go through the assignment that was uploaded for week 6, and then help you to solve that

assignment.

If you remember what that assignment was weeks 6 we finished logic coverage criteria

specifically, we saw how logic coverage criteria applies to test source code to test design

aspects things like preconditions or post conditions or invariants that come bed design.

And we also saw an example of how logical predicate come as guards in finite state

machines and so how to design test cases based on that.

(Refer Slide Time: 00:53)

So, given you a simple assignment for 10 marks consisting of fill in the blanks and

objective choice questions for that week, this video will walk you through the

assignment. And we will discuss how we could solve it. I hope all of you have made an

attempt to solve the assignment yourself before viewing this video.

(Refer Slide Time: 01:10)

So, what was the first question in the assignment? It was a problem of reachability and

controllability or R I P R criteria, as we called it in the first week. So, some predicates in

the source code purely contain internal variables may not contain any inputs. So, you

need to be able to reach those predicates and effect whatever coverage criteria that I want

to effect on them by changing values of inputs.

So, this question is about that (Refer Time: 01:39) is it asks you the problem of reaching

a particular statement containing a predicate with internal variables, and assigning values

to input such that the predicate can be made true or false the particular clause in the

predicate can be made true or false, what is this problem called. It is the problem of

controllability it comes after the problem reachability, reachability will just reach the

predicate controllability will help you to assign values to input variable so as to control

the predicate.

(Refer Slide Time: 02:10)

The second question was a simple state true or false question, that asks consider a

predicate that has only one clause it ask you to say is clause coverage the same as

predicate coverage is the same as combinatorial coverage the answer to this question is

an obvious yes or true, why because the predicate has only one clause. So, making the

predicate true or false will also make the clause true or false, and there are exactly two

possible assignments for this single predicate that contains a single clause that is the

entire truth table this single predicate is made true once single predicate is made false

once.

So, the truth table also has exactly only two values. So, it is the same as all combinations

coverage. So, whenever a predicate has a single clause, all these three coverage criteria

predicate coverage, clause coverage and all combinations coverage turn out to be the

same.

(Refer Slide Time: 03:03)

Question number 3 is a multiple choice question, which reads as follows it asks you the

following which of the following represents the normal form in which predicates

corresponding to pre conditions are. There were four options given to you in the

question, the option 1 was prenex normal form, option 2 was a disjunctive normal form,

option 3 was conjunctive normal form, an option four says it occurs in a normal form

that is none of the above 3.

The correct answer to this is the third option which is conjunctive normal form; why is

that so. If you remember when we had seen predicate conditions we have seen an

example relating to these the probably example program that we had seen was calculate

the number of days between two given dates in within the same year and then the

program has several pre-conditions which specify what the values for months will be

like, what the values for the various dates will be like. And the fact that the value for the

first month should be before the value for the second month, so that I can specify the

number of days that have passed in between the first date and second date.

Being taken all these pre conditions and in the program that is the pre conditions that

were written in English originally, but transformed into predicates. Each condition was

written as a simple clause and the entire precondition corresponding to the program was

and of all these individual clauses. So, if it is an and of all the individual clauses or if it is

an and of what is called disjunct where inside there are odds, than the normal form is

supposed to be conjunctive normal form that is condemned represents and this entire

predicate which occurs is a precondition is an and of all the individual conditions

because we really cannot write an or because you cannot say that one of the pre

conditions should be true it is just each and every single precondition should be true.

So, the natural connective is an and when the connective is an and, the normal form that

we are talking about is conjunctive normal form. Disjunctive normal form deals with

odds prenex normal form. In fact, does not deal with this kind of thing it deals with

formulas which have quantifiers I have just given it as a filter option. So, the correct

option here is conjunctive normal form.

(Refer Slide Time: 05:13)

So, the next question is asked you to state at the whether of given statement is true or

false the statement that was given is this claws coverage for predicates, that model

specifications always visible. In other words when we consider specifications which are

requirements given in English or as finite state machines, write out the logical formula

corresponding to them and consider clause coverage for these predicates it has is it

always possible to write test cases for the t r of gloss coverage or in other words is clause

coverage feasible.

The answer is false why is it false we saw one example through the course of lectures

last week if you remember we saw the example of a finite state machine corresponding

to a subway train, and there using illustrations I showed you how if one clause becomes

true then the other one cannot be true.

So, two classes in a particular predicate cannot be true simultaneously. So, if I have to

consider clause coverage I have to be able to make each clause intern true and false, but

they occur in such a way that if one clause is true the other will never be true. So, if I try

to achieve clause coverage for one clause, I will not be able to achieve clause coverage

for the other clause; so clause coverage for predicates that occur as specifications are not

always visible.

(Refer Slide Time: 06:38)

So, the answer to this question is false. For the remaining 6 questions that is question

number 5 to question number 10, I had given the state machine that we saw during the

lectures which was the state machine corresponding to a subway train and had asked you

to work out a few things related to predicate coverage for that state machine.

(Refer Slide Time: 06:59)

So, the state machine has 4 states just to recap these are the 4 states all doors closed all

doors are open, the doors on the left hand side are open and the doors on the right hand

side are open. Initially in that train the initial state as marked like this is the state where

all doors are closed. And the train starts moving out of the station when it reaches the

next station if the platform is on the left hand side then the left doors becomes open,

when the platform is on the right hand side the right to become open, in case there is

platform that is accessible on both the sides then all the doors become open.

So, what are these predicates that model the transitions between the trains, between the

states? So, it is say from the state all doors closed to the states left door open, I can do

the transaction provided this fairly big predicate is true. So, let us read the predicate and

understand what it says.

So, it says train speed is 0 which means the train is not moving it is come to a station, if

train is moving you better not open the doors right and it says the platform is on the left

hand side that is what I told you a little while ago, the location is either the state the train

is in the station which says location is in station or somebody has pressed an emergency

stop button that is why the train is not moving, and has also done an override open of the

train, while the train is still in tunnel is. It clear please similarly on the other side I am

sorry this thing guard is running over a bit out to the slide, but it is an exact flip of the

guard on the left hand side.

So, you see from a state where all doors are closed, I can move to a state where the right

door is open provided the train is not moving platform is on the right and the train is in

the station or, somebody has pressed an emergency stop done over ride open for the door

and the train is still in the tunnel. If any from any of these states the other door is open

the platform is available on the other side like if the right told that open and the second

platform is available on the left hand side then you can open the left door.

So, you got a state all doors similarly if the left doors are open, and the second platform

is available on the right hand side then you can open the right doors also and then you go

to the state all doors open. So, from the state all doors open I can go to all doors closed,

provided there is no emergency stop nobody has pressed override open, all the doors

have been cleared in the sense that there are no passengers moving in and out the doors

and somebody has pressed the close door, but. So, is it clear please what the state

machine looks like, this is a simple four state machine started with a lot of predicate. So,

we will see some questions about the state machine and about predicate logic coverage

criteria.

(Refer Slide Time: 09:52)

So, the fifth question which was the first in the list of questions about the state machine

reads as follows. So, it is for the finite state machine to be in a state corresponding to all

the doors being open, the platform should be on the left hand side and on the right hand

side. Is your answer true or false the answer is obviously, true because if you inspect this

to finite state machine as we saw, it could be in left doors open or right doors and if the

platform is available on the other side then it goes to all doors open. So, the answer to

this is true.

(Refer Slide Time: 10:26)

So, the next question says look manually inspect the FSM which means study the FSM

and state true or false for the following question. It is possible to go from all doors open

state to all doors closed state when there is an emergency stop. So, let us go back and

inspect the turing machine, the state that we are considering the transition from out off is

the state all doors open, the state that we are considering to translation into is the state all

doors closed; and the questions says I can go from this state to the state when there is an

emergency stop.

So, let us look at the guard in that transition there is an emergency stop clause in the

guard in the transition, but what is the clause come with? It comes with a negation if you

look at it here the first clause is the clause on emergency stop it is a negation of

emergency stop not emergency stop. So, the answer to this question is false.

(Refer Slide Time: 11:23)

So, moving on the next question quest number 7 in the assignment was the following,

can the finite state machine model be in a state such that the train is not in station and not

in a tunnel. Is that possible if you remember we had looked at it even when we did the

lectures it is possible. So, when you try to do the truth table for each of the clauses you

will realize that there is a particular state, where the not in tunnel in tunnel need not be

true and in station need not be true.

Whereas, in real life that is not possible and in fact when we did the lectures we had

understood that there is something wrong with finite state machine. So, from the point

view of testing it should be flagged as a potential error or vulnerability back to the

designer.

(Refer Slide Time: 12:10)

So, the next question was about guard clauses in a predicate determining the predicate.

So, the we were asked to be started with one guard which is the guard that takes you

from all doors closed to left doors open, which is this guard it is says train speed 0

platform is on the left hand side train is in station or there is an emergency stop an

override button pressed and the train is still in tunnel. If you see there are 6 guards here 6

clauses sorry here 1, 2, 3, 4, 5, 6 and what it asks you to do it takes we have taken

examples of 3 clauses and ask you to determine the condition about when the clause will

determine the predicate.

So, in this question we have taken the first clause which is the clause of train speed being

equal to 0, and you are asked to determine when this clause will determine the predicate.

I have not given you the working out here, but the kind of thing that you have to do is

substitute for the this clause to be true in this whole predicate, substitute for this clause to

be false in the whole predicate and absorb it. Then use the logical operators that we know

inference rule that we know to be able to simplify it. So, when I substitute it with true it

will be true and something else.

So, the true will go away this one will get retained, when I substitute it false it will be

false and something else. So, the false will stay back and then you go on simplifying this

will be the final answer. It will be platform is equal to left and location in station or

emergency stop and override open and location in tunnel; this is what will happen this is

the predicate that will get if you try to make the first clause determine the guard. So, you

stop at this you do not have to write test requirements and test cases for c a c c and other

active clause criteria, I just ask you to tell the conditions or the predicate under which

this clause will determine the predicate that is all is the question about.

(Refer Slide Time: 14:08)

Next question is very similar, instead of taking it takes the same predicate and it takes

this clause override open which comes inside this hand and ask you to determine the

conditions under which this clause will determine the predicate. So, you have to do the

same thing substitute override open with true ones, substitute override open with false

ones and then simplify the resulting logical formulae using the inference rules of logic

and write the final predicate which will tell you exactly when this clause will determine

the predicate.

Here again you do not write the test cases because there is no t r given in terms of do this

to achieve certain active clause coverage criteria or inactive clause coverage criteria. So,

you just stop at writing the resulting predicate and leave it.

(Refer Slide Time: 14:55)

Question number 10 is again a same thing it picks up another clause this time the clause

that is picked up is the clause which says platform is on the left, and it asks you to

determine the conditions or the predicate under which the clause determines the guard

(Refer Time: 15:10) do the same thing substitute this to be true ones, substitute this to be

false one XOR, them use the inference rules of logic to be able to simplify it this is the

result in answer that you will get. Try and do it on your own if you get stuck feel free to

query me in the forum and I will try to work it for you through a reply.

I hope this small assignment solving exercise was useful for you and your answers did

match a lot with the answers that we have worked out. What you will do today for rest of

this week is I will start with a new chapter which is called input space partitioning. So,

my next lecture we will not do logic coverage criteria anymore. We will begin with the

new set of test case algorithms based on input space partitioning.

Thank you.

