
Software Testing
Prof. Meenakshi D’Souza

Department of Computer Science and Engineering
International Institute of Information Technology, Bangalore

Lecture - 29
Logic Coverage Criteria: Applied to finite state machines

Hello there. This is the last lecture of week 6; we will be done with logic coverage

criteria with this lecture. Next week I will begin with the new test case design algorithm.

What are we going to do today? We are going to look at how a logic coverage criterion

applies to finite state machines.

(Refer Slide Time: 00:29)

So, this is same slide that I had shown you every lecture that we did in logic coverage

criteria meant to be a recap of the various coverage criteria that we saw and their

subsumption. Introduce example when we do finite state machines. We will see may two

or three of these coverage criteria and see how to write test requirements in test cases for

those, for specifications that come from finite state machines.

(Refer Slide Time: 00:55)

So, we introduce finite state machines when we did graph based testing, they have nodes

or vertices which are states and the adjacent finite state machines are called transitions,

adjust are labelled with actions events and also guards, which are basically conditions

that tell you that when an event can be happen, and when it happens the resulting action

can happen.

Finite state machines have designated initial states they may or may not have final states,

they are very popular model for specification for design they occur as UML state

diagrams especially in the embedded control software domain finite state machines are

routinely used to specify control algorithms.

(Refer Slide Time: 01:39)

So, we will see how to apply logic coverage criteria for finite state machines using an

example. So, here is an example of a very small finite state machine, in real life finite

state machines that correspond to realistic models hardly are so small, but what people

do was what is called modular design they come up initially a very high level finite state

machine that access specification or is it design model, as and when they get clarity they

keep refining or adding details of that finite state machines. So, even it is a small

machine here that we are looking at in this example, it has enough details enough

predicates for us to be able to look at how logic coverage criteria applies to this.

So, this is a machine of let us say a model of how the doors of a subway train runs

subway train or a metro train. So, these trains keep moving from one station to the other,

and the way they move they have doors the trains have doors on both sides. And

typically for safety reasons if the platform on a particular station comes on the left side

then it is expected the only the doors on the left hand side open the doors on the right

hand side are close. And if a platform; if particular station comes in such a way that there

is platform accessible on both sides then both sides doors open and when the train is

moving which means it is inside a subway tunnel, then you expect both doors to be

closed.

So, here is a state machine of a subway train that has 4 states that talk about what are the

status of all doors in the train. So, the initial state is the state which says all the doors of

the train are closed, from that state it could move to one of these two states it could either

move to a state where all the left doors are open or it could move to a state where all the

right doors are open and from either of these states left doors open or all right doors open

it could move to a state which says all the doors are open. So, each of these moves or

transitions are guarded by a whole set of conditions as you can see here.

For example from the state all doors closed to the state left doors open, if I have to take

that transition then all these conditions must be true. The final state machine has access

to all these variables; like in program you see the variables right in the beginning finite

state machines they are not explicitly declared, but we assume that eventually this finite

state machine design a specification is meant to be modeled implemented using codes all

these will surface as a real variables that will be in the code corresponding to the finite

state machine.

So, there is a variable that talks about the speed of a train called trains speed it says that

train speed should be 0, which means the train should not be moving there is a variable

which says where is the platform, is the platform on the left hand side or is the platform

on the right hand side. So, in this case the guard to transition to left doors open the

platform should be on the left hand side and there is another variable which talks about

the location of the station, location of the train it is says the train is in station which

means it is come inside the station, and it is either this or there is an emergency stop

somebody is pressed the emergency stop button.

And because this an emergency stop somebody is trying to open the door by overriding

it, while the train is still in the tunnel, but the train is not moving in all the cases. So,

there are so many variables and this large guard tells you when the transition from all

doors close to left doors open happens. So, it is says train should not be moving, platform

should be in the station and the train should platform should be on the left side and train

should be in station. Either this or there was an emergency stop somebody is trying to

override open the doors and the train is still in the tunnel.

So now, similarly from the state all the doors closed to the state right doors open, when

do I go again the train should not be in moving platform should be on the right, location

should be in station, I am sorry this is gone out of the slide in little bit emergency stop,

override open location in tunnel.

It is an exact replica of this the only condition that is changed is the platform is come on

the right hand side for this transition now it is so, happens that the second platform is on

the right hand side and there is a platform on the right hand side then apart from the left

doors you can open the right doors implicitly, and you go to a state which says all door

are open. And similarly if there is a second (Refer Time: 06:22) when the right doors are

open, if there is a second platform on the left hand side then you could open the left

doors also and go to a state all doors open. And from the state all doors are open to the

state all doors closed, how do we go? We go when the doors are clear and somebody

presses the close door button and there is no emergency stop and nobody has pressed

override open.

So, is it clear how the simple state machine looks like and why I have had drawn at this

way, we have drawn at this way because the focus of this lecture is to be able to illustrate

the use of logical predicates as they come in finite state machines. So, this state machine

even at this level could have actions, if we not really specified all that because I want to

be able to focus on logical predicate. So, if you see there are so many predicates that we

can consider five of them here, just for illustrate purposes let me take this predicates, the

one on the bottom left which goes which let us you go from the state all doors closed to

the state left doors open.

We will take this predicate and illustrate the use of logic coverage criteria that we learnt

on testing this predicate indirectly testing the influence of that predicate or guard on the

finite state machine.

(Refer Slide Time: 07:39)

So, I have just written the predicate that I want to consider. So, this is the predicate, it

says train speed 0, platform is on the left, the train is in station or somebody is pressed

the emergency stop doing override open while the train is still in tunnel, which occurs as

a guard in the transition from the state of all doors being closed to the state of left doors

being open. How many clauses does this predicate have let us count, this is one train

speed equal to 0 platform equal to left is a second clause location in station is the third

clause, emergency stop fourth one, override open fifth clause, location is equal to in

tunnel sixth clause.

Predicate coverage criteria for this predicates is very easy, it will tell you basically

whether you can take this transition or not. You can take this transition if this predicate is

true which means if the clauses that are connected by an end a true otherwise you cannot

take the transition. So, that is what predicate coverage criteria will see, now we will work

out active clause coverage criteria for this predicate.

(Refer Slide Time: 08:54)

So, I take this predicate it has 6 clauses what is the first step to do to determine active

clause coverage criteria. Per clause I have to say call it as a major clause and see when

that clause determines the predicate. So, if a is one of the clauses, in the predicate I do

what is called determining p subscript a. So, I have worked it out offline I seriously urge

you to take this predicate and work out for each of the 6 clauses when that clause will be

determine the predicate using the formula that says replace the clause with true in the

predicate, replace the clause which false in the predicate and exhort them that is the

formula if you remember.

So, use that formula I have worked it out and for the first clause in the predicate, which

is train speed is equal to 0 after simplification this is the p a value, that is this is the p

train speed is equal to 0 value and similarly I have also worked out for the clause

override open after doing the same formula substituting override open with true one,

substituting override open with false one, and exhorting them and simplifying the

resulting formula, I will get this simplify predicate.

Similarly, for all the remaining four clause we can compute if that clause is the major

clause, the conditions under which that clause will determining the predicate. I have just

done two of them here the remaining four can be worked out. In fact, for these two also I

have given you the final resulting formula, I have not given you the steps of working.

(Refer Slide Time: 10:23)

So, we take the first one which is train speed 0 and the other one that we worked out

which is override open, and remember what are these? This is like a formula in

conjunctive disjunctive normal form that we saw in the last lecture. So, it is very easy to

write acc test requirement for these formulas.

What you do? You make all the other clauses to take value true and the clause that is

your major clause make it true once make it false once. Similarly when our override

open is a major clause you make it true once you make it false once the rest the clauses

are all may true provided the diagonal along the diagonal. It is so happens that override

open is the fourth clause in this predicate; one two three four fifth clause sorry it is the

fifth clause in this predicate. So, the diagonal corresponding to that will be false the rest

of the values will all be true.

So, this is how you write correlated active clause coverage criteria TR for that. I have

just given you for the two clauses for which we worked out here and give when that

clause determines the predicates, there are four more clauses after you work them out

you can fill up this table and see how it looks like; so this TR for CACC for the

predicate. So, to be able to give test cases for this TR, you have to make train speed

value 0, if it ensure that the platform is said to left in station is a Boolean variable should

be may true emergency stop should be made true, override open should be made true,

and in tunnel should be made true this how a test case look for that will look like.

(Refer Slide Time: 11:51)

So, now you will realize the there is problem here if you think a little bit about it, in this

example itself we do have a bit of a problem if you see for train speed 0 to be the major

clause and for it to be influence in the predicate, look at the test case that each of this

value should be make. Now if you see is it actually feasible to make each of them true in

the realistic scenario that the finite state machine would be implemented in, it will not

why is that so, because if you see it says in station is set to true and in tunnel is also said

to true in this both these cases; which means that the train is in the station and in the

tunnel at the same time that is not practically possible right, it is either in the station or in

the tunnel. So, there could be a possible error or you could interpret it as that the finite

state machines that you saw at it is level of abstraction, does not give enough details to

be able to specify what we need.

In fact, you could find several other errors here is one more, suppose I try to write CACC

TR test requirement for another clause in station which is here, which is one of the

clauses that come in the predicate. So, here again you will realize that this is the major

clause I make it true once false once the rest of it take true false values, if you see what I

have done here is it says in station is false here and in station is a false here which means

it says the reverse what the previous thing said. It is says that the train neither in station

nor in tunnel it is just disappear that also is wrong right there is something in complete in

the specification this one said the train is both in the station and in the tunnel not clear

this says that the train is neither not in the station not and not in the tunnel it is a second

row here if you see both are marked false that is also not possible.

So, it could be interpreted as two things, you could say that in this finite state machine

model I have found two errors. There is inconsistency in specifying exactly where will

the train be the predicates or guards do not really factor in the consideration that the train

can be in either in the station or in tunnel. So, these guards are not clearly specified and

that there is an error in the finite state machine.

Or another way to be treated it as is to say that there is incomplete, this is incomplete

because the way it is specifies it does not give details about train being in exactly one of

the location. So, more details have to be added or that the finite state machine has to be

refined it to be able to complete that. Either way whatever it is we have found a possible

Bughan model and logic coverage criteria are very useful to be able to do this.

(Refer Slide Time: 14:47)

So, similarly if you work out for the other remaining clauses, you could find more

inconsistencies and more errors, I just did two because in this particular case just these

two were, but good enough to find inconsistencies or potential errors in the finite state

machine as a specification, but there are could be a couple of other issues also. Now

when we are looking at an code like when we saw logic coverage criteria as it applies to

code when we saw the two example the thermostat and the triangle type, we told you that

if a particular logic coverage criteria has internal variables how to solve it for them how

to ensure reachable.

But when we apply logic coverage criteria for finite state machines, as I told you when I

introduced to you this example there is no explicit notion of inputs and outputs. So, what

is the test case? Test case is directly given in terms of inputs and outputs that the finite

state machine looks like, and output could also be given in terms of which is the resulting

state, sometimes they could be things wrong in the state that the turing machine goes into

even though state is not an explicit variable that occurs as a guard. So, it is up to the

tester to inform all these information from informal specifications of finite state

machines or semi formal specification or finite state machines, and complete the test case

to identify a potential error of fault in the specification. They have to be explicitly

derived you cannot expect them to be present and readily available as they have with

code.

(Refer Slide Time: 16:15)

So, usually testing based on finite state machine is a very popular testing, there are huge

number of papers that are in this area broadly called as model based testing it helps in

early detection of errors, why it so, because finite state machines typically a models of

specification and specification and design are done before we write code. So, I have

found the potential error writes there before I write code. Instead of finding it much later

after I write code it helps in early detection of errors if I detected early rather than

detecting it late I save myself a lot of trouble with rework. So, it is saves lot of cost and

lot of time and you can check out the testing literature for a huge amount of material

related to test case design and finite state machines, we have just covered logic base test.

So, this brings us to an end of logic base testing there will be an assignment this week

that will deal with logic base testing for code specifications and finite state machines, I

will try and upload video. Next week that will let you solve tell you how to solve that

assignment, but feel free to do it before you see that video.

Thank you.

